Kim H et al. (JAN 2013)
Nature communications 4 2403
Modulation of β-catenin function maintains mouse epiblast stem cell and human embryonic stem cell self-renewal.
Wnt/β-catenin signalling has a variety of roles in regulating stem cell fates. Its specific role in mouse epiblast stem cell self-renewal,however,remains poorly understood. Here we show that Wnt/β-catenin functions in both self-renewal and differentiation in mouse epiblast stem cells. Stabilization and nuclear translocation of β-catenin and its subsequent binding to T-cell factors induces differentiation. Conversely,retention of stabilized β-catenin in the cytoplasm maintains self-renewal. Cytoplasmic retention of β-catenin is effected by stabilization of Axin2,a downstream target of β-catenin,or by genetic modifications to β-catenin that prevent its nuclear translocation. We also find that human embryonic stem cell and mouse epiblast stem cell fates are regulated by β-catenin through similar mechanisms. Our results elucidate a new role for β-catenin in stem cell self-renewal that is independent of its transcriptional activity and will have broad implications in understanding the molecular regulation of stem cell fate.
View Publication
产品类型:
产品号#:
72052
72054
72562
72564
产品名:
CHIR99021
CHIR99021
IWR-1-endo
IWR-1-endo
文献
Llibre A et al. (MAR 2016)
Journal of Immunology 196 5 2085--94
LLT1 and CD161 Expression in Human Germinal Centers Promotes B Cell Activation and CXCR4 Downregulation.
Germinal centers (GCs) are microanatomical structures critical for the development of high-affinity Abs and B cell memory. They are organized into two zones,light and dark,with coordinated roles,controlled by local signaling. The innate lectin-like transcript 1 (LLT1) is known to be expressed on B cells,but its functional role in the GC reaction has not been explored. In this study,we report high expression of LLT1 on GC-associated B cells,early plasmablasts,and GC-derived lymphomas. LLT1 expression was readily induced via BCR,CD40,and CpG stimulation on B cells. Unexpectedly,we found high expression of the LLT1 ligand,CD161,on follicular dendritic cells. Triggering of LLT1 supported B cell activation,CD83 upregulation,and CXCR4 downregulation. Overall,these data suggest that LLT1-CD161 interactions play a novel and important role in B cell maturation within the GC in humans.
View Publication
产品类型:
产品号#:
17954
17954RF
产品名:
EasySep™人B细胞分选试剂盒
RoboSep™ 人B细胞分选试剂盒
文献
van de Bunt M et al. (APR 2016)
Islets 8 3 83--95
Insights into islet development and biology through characterization of a human iPSC-derived endocrine pancreas model.
Directed differentiation of stem cells offers a scalable solution to the need for human cell models recapitulating islet biology and T2D pathogenesis. We profiled mRNA expression at 6 stages of an induced pluripotent stem cell (iPSC) model of endocrine pancreas development from 2 donors,and characterized the distinct transcriptomic profiles associated with each stage. Established regulators of endodermal lineage commitment,such as SOX17 (log2 fold change [FC] compared to iPSCs = 14.2,p-value = 4.9 × 10(-5)) and the pancreatic agenesis gene GATA6 (log2 FC = 12.1,p-value = 8.6 × 10(-5)),showed transcriptional variation consistent with their known developmental roles. However,these analyses highlighted many other genes with stage-specific expression patterns,some of which may be novel drivers or markers of islet development. For example,the leptin receptor gene,LEPR,was most highly expressed in published data from in vivo-matured cells compared to our endocrine pancreas-like cells (log2 FC = 5.5,p-value = 2.0 × 10(-12)),suggesting a role for the leptin pathway in the maturation process. Endocrine pancreas-like cells showed significant stage-selective expression of adult islet genes,including INS,ABCC8,and GLP1R,and enrichment of relevant GO-terms (e.g. insulin secretion"; odds ratio = 4.2�
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Rank G et al. (SEP 2010)
Blood 116 9 1585--92
Identification of a PRMT5-dependent repressor complex linked to silencing of human fetal globin gene expression.
Defining the molecular mechanisms underpinning fetal (gamma) globin gene silencing may provide strategies for reactivation of gamma-gene expression,a major therapeutic objective in patients with beta-thalassemia and sickle cell disease (SCD). We have previously demonstrated that symmetric methylation of histone H4 Arginine 3 (H4R3me2s) by the protein arginine methyltransferase PRMT5 is required for recruitment of the DNA methyltransferase DNMT3A to the gamma-promoter,and subsequent DNA methylation and gene silencing. Here we show in an erythroid cell line,and in primary adult erythroid progenitors that PRMT5 induces additional repressive epigenetic marks at the gamma-promoter through the assembly of a multiprotein repressor complex containing the histone modifying enzymes SUV4-20h1,casein kinase 2alpha (CK2alpha),and components of the nucleosome remodeling and histone deacetylation complex. Expression of a mutant form of PRMT5 lacking methyltransferase activity or shRNA-mediated knockdown of SUV4-20h1 resulted in loss of complex binding to the gamma-promoter,reversal of both histone and DNA repressive epigenetic marks,and increased gamma-gene expression. The repressive H4K20me3 mark induced by SUV4-20h1 is enriched on the gamma-promoter in erythroid progenitors from adult bone marrow compared with cord blood,suggesting developmental specificity. These studies define coordinated epigenetic events linked to fetal globin gene silencing,and provide potential therapeutic targets for the treatment of beta-thalassemia and SCD.
View Publication