Modulation of in vitro proliferation kinetics and primitive hematopoietic potential of individual human CD34+CD38-/lo cells in G0.
Whether cytokines can modulate the fate of primitive hematopoietic progenitor cells (HPCs) through successive in vitro cell divisions has not been established. Single human marrow CD34+CD38-/lo cells in the G0 phase of cell cycle were cultured under 7 different cytokine combinations,monitored for proliferation on days 3,5,and 7,then assayed for long-term culture-initiating cell (LTC-IC) function on day 7. LTC-IC function was then retrospectively correlated with prior number of in vitro cell divisions to determine whether maintenance of LTC-IC function after in vitro cell division is dependent on cytokine exposure. In the presence of proliferation progression signals,initial cell division was independent of cytokine stimulation,suggesting that entry of primitive HPCs into the cell cycle is a stochastic property. However,kinetics of proliferation beyond day 3 and maintenance of LTC-IC function were sensitive to cytokine stimulation,such that LTC-IC underwent an initial long cell cycle,followed by more synchronized shorter cycles varying in length depending on the cytokine combination. Nonobese diabetic/severe combined immunodeficiency (NOD/SCID) transplantation studies revealed analogous results to those obtained with LTC-ICs. These data suggest that although exit from quiescence and commitment to proliferation might be stochastic,kinetics of proliferation,and possibly fate of primitive HPCs,might be modulated by extrinsic factors.
View Publication
产品类型:
产品号#:
05150
产品名:
MyeloCult™H5100
文献
Liu H et al. (DEC 2006)
Biomaterials 27 36 5978--89
Effect of 3D scaffold and dynamic culture condition on the global gene expression profile of mouse embryonic stem cells.
We have previously demonstrated that mouse embryonic stem (ES) cells differentiated on three-dimensional (3D),highly porous,tantalum-based scaffolds (Cytomatrixtrade mark) have significantly higher hematopoietic differentiation efficiency than those cultured under conventional two-dimensional (2D) tissue culture conditions. In addition,ES cell-seeded scaffolds cultured inside spinner bioreactors showed further enhancement in hematopoiesis compared to static conditions. In the present study,we evaluated how these various biomaterial-based culture conditions,e.g. 2D vs. 3D scaffolds and static vs. dynamic,influence the global gene expression profile of differentiated ES cells. We report that compared to 2D tissue culture plates,cells differentiated on porous,Cytomatrixtrade mark scaffolds possess significantly higher expression levels of extracellular matrix (ECM)-related genes,as well as genes that regulate cell growth,proliferation and differentiation. In addition,these differences in gene expression were more pronounced in 3D dynamic culture compared to 3D static culture. We report specific genes that are either uniquely expressed under each condition or are quantitatively regulated,i.e. over expressed or inhibited by a specific culture environment. We conclude that that biomaterial-based 3D cultures,especially under dynamic conditions,might favor efficient hematopoietic differentiation of ES cells by stimulating increased expression of specific ECM proteins,growth factors and cell adhesion related genes while significantly down-regulating genes that act to inhibit expression of these molecules.
View Publication
产品类型:
产品号#:
产品名:
文献
Tyznik AJ et al. ( 2014)
The Journal of Immunology 192 8 3676--85
Distinct requirements for activation of NKT and NK cells during viral infection
NK cells are key regulators of innate defense against mouse CMV (MCMV). Like NK cells,NKT cells also produce high levels of IFN-γ rapidly after MCMV infection. However,whether similar mechanisms govern activation of these two cell types,as well as the significance of NKT cells for host resistance,remain unknown. In this article,we show that,although both NKT and NK cells are activated via cytokines,their particular cytokine requirements differ significantly in vitro and in vivo. IL-12 is required for NKT cell activation in vitro but is not sufficient,whereas NK cells have the capacity to be activated more promiscuously in response to individual cytokines from innate cells. In line with these results,GM-CSF-derived dendritic cells activated only NK cells upon MCMV infection,consistent with their virtual lack of IL-12 production,whereas Flt3 ligand-derived dendritic cells produced IL-12 and activated both NK and NKT cells. In vivo,NKT cell activation was abolished in IL-12(-/-) mice infected with MCMV,whereas NK cells were still activated. In turn,splenic NK cell activation was more IL-18 dependent. The differential requirements for IL-12 and IL-18 correlated with the levels of cytokine receptor expression by NK and NKT cells. Finally,mice lacking NKT cells showed reduced control of MCMV,and depleting NK cells further enhanced viral replication. Taken together,our results show that NKT and NK cells have differing requirements for cytokine-mediated activation,and both can contribute nonredundantly to MCMV defense,revealing that these two innate lymphocyte subsets function together to fine-tune antiviral responses.
View Publication
产品类型:
产品号#:
21000
20119
20155
18554
18554RF
18564
18564RF
产品名:
RoboSep™- S
RoboSep™ 吸头组件抛光剂
RoboSep™分选试管套装(9个塑料管+吸头保护器)
文献
Hockemeyer D et al. (SEP 2008)
Cell stem cell 3 3 346--53
A drug-inducible system for direct reprogramming of human somatic cells to pluripotency.
Current approaches to reprogram human somatic cells to pluripotent iPSCs utilize viral transduction of different combinations of transcription factors. These protocols are highly inefficient because only a small fraction of cells carry the appropriate number and stoichiometry of proviral insertions to initiate the reprogramming process. Here we have generated genetically homogeneous secondary" somatic cells�
View Publication
产品类型:
产品号#:
72742
产品名:
强力霉素(盐酸盐)
文献
Horikiri T et al. ( 2017)
PloS one 12 1 e0170342
SOX10-Nano-Lantern Reporter Human iPS Cells; A Versatile Tool for Neural Crest Research.
The neural crest is a source to produce multipotent neural crest stem cells that have a potential to differentiate into diverse cell types. The transcription factor SOX10 is expressed through early neural crest progenitors and stem cells in vertebrates. Here we report the generation of SOX10-Nano-lantern (NL) reporter human induced pluripotent stem cells (hiPS) by using CRISPR/Cas9 systems,that are beneficial to investigate the generation and maintenance of neural crest progenitor cells. SOX10-NL positive cells are produced transiently from hiPS cells by treatment with TGFβ inhibitor SB431542 and GSK3 inhibitor CHIR99021. We found that all SOX10-NL-positive cells expressed an early neural crest marker NGFR,however SOX10-NL-positive cells purified from differentiated hiPS cells progressively attenuate their NL-expression under proliferation. We therefore attempted to maintain SOX10-NL-positive cells with additional signaling on the plane and sphere culture conditions. These SOX10-NL cells provide us to investigate mass culture with neural crest cells for stem cell research.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Gü et al. (DEC 2010)
Cytotherapy 12 8 1006--12
Evaluation of mobilized peripheral stem cells according to CD34 and aldehyde dehydrogenase expression and effect of SSC(lo) ALDH(br) cells on hematopoietic recovery.
BACKGROUND AIMS: We evaluated hematopoietic stem cells according to CD34 expression and aldehyde dehydrogenase (ALDH) activity in peripheral blood and apheresis product samples from patients after mobilization with granulocyte-colony-stimulating factor (G-CSF) alone or G-CSF after high-dose cyclophosphamide (4 g/m²) once daily,intravenously on day 1). We also investigated the relationship between the number of SSC(lo) CD45(dim) CD34(hi) cells,SSC(lo) ALDH(br) cells and engraftment. METHODS: Thirty patients (20 males and 10 females),who were candidates for autologous peripheral blood stem cell transplantation,were included in the study. Cyclophosphamide + G-CSF was used for 17 and G-CSF alone for 24 mobilizations. Primary diagnoses were multiple myeloma (n = 14),Hodgkin's lymphoma (n = 7),non-Hodgkin's lymphoma (n = 2),acute myloid leukemia (n = 2),chronic lymphocytic leukemia (n = 1) and germ cell testis tumor (n = 1). RESULTS: Numbers of SSC(lo) CD45(dim) CD34(hi) cells and SSC(lo) ALDH(br) cells were highly correlated in both peripheral blood and apheresis products (P textless 0.001). We could not find a relationship between the transplanted SSC(lo) CD45(dim) CD34(hi) cell dose or SSC(lo) ALDH(br) cell dose and platelet or neutrophil recovery. The optimal thresholds for SSC(lo) CD45(dim) CD34(hi) cells were 5.40 × 10�?�/kg for neutrophil recovery and 7.22 x 10�?�/kg for platelet recovery. The optimal thresholds for SSC(lo) ALDH(br) cells were 6.53 x 10�?�/kg for neutrophil recovery and 8.72 x 10�?�/kg platelet recovery. CONCLUSIONS: According to our data,numbers of SSC(lo) ALDH(br) cells are in very good agreement with numbers of SSC(lo) CD45(dim) CD34(hi) cells and can be a predictor of stem cell mobilization.
View Publication
产品类型:
产品号#:
01700
01705
01702
产品名:
ALDEFLUOR™工具
ALDEFLUOR™DEAB试剂
ALDEFLUOR™测定缓冲液
文献
Hanawa H et al. (JUN 2004)
Blood 103 11 4062--9
Efficient gene transfer into rhesus repopulating hematopoietic stem cells using a simian immunodeficiency virus-based lentiviral vector system.
High-titer,HIV-1-based lentiviral vector particles were found to transduce cytokine-mobilized rhesus macaque CD34(+) cells and clonogenic progenitors very poorly (textless 1%),reflecting the postentry restriction in rhesus cells to HIV infection. To overcome this barrier,we developed a simian immunodeficiency virus (SIV)-based vector system. A single exposure to a low concentration of amphotropic pseudotyped SIV vector particles encoding the green fluorescent protein (GFP) resulted in gene transfer into 68% +/- 1% of rhesus bulk CD34(+) cells and 75% +/- 1% of clonogenic progenitors. Polymerase chain reaction (PCR) analysis of DNA from individual hematopoietic colonies confirmed these relative transduction efficiencies. To evaluate SIV vector-mediated stem cell gene transfer in vivo,3 rhesus macaques underwent transplantation with transduced,autologous cytokine-mobilized peripheral blood CD34(+) cells following myeloablative conditioning. Hematopoietic reconstitution was rapid,and an average of 18% +/- 8% and 15% +/- 7% GFP-positive granulocytes and monocytes,respectively,were observed 4 to 6 months after transplantation,consistent with the average vector copy number of 0.19 +/- 0.05 in peripheral blood leukocytes as determined by real-time PCR. Vector insertion site analysis demonstrated polyclonal reconstitution with vector-containing cells. SIV vectors appear promising for evaluating gene therapy approaches in nonhuman primate models.
View Publication
产品类型:
产品号#:
产品名:
文献
Bardy J et al. (SEP 2013)
Tissue engineering. Part C,Methods 19 2 120904064742009
Microcarrier suspension cultures for high-density expansion and differentiation of human pluripotent stem cells to neural progenitor cells.
Neural progenitor cells (NPCs) derived from human induced pluripotent stem cells (hiPSCs) can be differentiated to neural cells that model neurodegenerative diseases and be used in the screening of potential drugs to ameliorate the disease phenotype. Traditionally,NPCs are produced in 2D cultures,in low yields,using a laborious process that includes generation of embryonic bodies,plating,and colony selections. To simplify the process and generate large numbers of hiPSC-derived NPCs,we introduce a microcarrier (MC) system for the expansion of a hiPSC line and its subsequent differentiation to NPC,using iPS (IMR90) as a model cell line. In the expansion stage,a process of cell propagation in serum-free MC culture was developed first in static culture,which is then scaled up in stirred spinner flasks. A 7.7-fold expansion of iPS (IMR90) and cell yield of 1.3×10�?� cells/mL in 7 days of static MC culture were achieved. These cells maintained expression of OCT 3/4 and TRA-1-60 and possessed a normal karyotype over 10 passages. A higher cell yield of 6.1×10�?� cells/mL and 20-fold hiPSC expansion were attained using stirred spinner flasks (seeded from MC static cultures) and changing the medium-exchange regimen from once to twice a day. In the differentiation stage,NPCs were generated with 78%-85% efficiency from hiPSCs using a simple serum-free differentiation protocol. Finally,the integrated process of cell expansion and differentiation of hiPSCs into NPCs using an MC in spinner flasks yielded 333 NPCs per seeded hiPSC as compared to 53 in the classical 2D tissue culture protocol. Similar results were obtained with the HES-3 human embryonic stem cell line. These NPCs were further differentiated into βIII-tubulin�?� neurons,GFAP�?� astrocytes,and O4�?� oligodendrocytes,showing that cells maintained their multilineage differentiation potential.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
07923
85850
85857
85870
85875
产品名:
Dispase (1 U/mL)
mTeSR™1
mTeSR™1
文献
Illi B et al. (MAR 2005)
Circulation research 96 5 501--8
Epigenetic histone modification and cardiovascular lineage programming in mouse embryonic stem cells exposed to laminar shear stress.
Experimental evidence indicates that shear stress (SS) exerts a morphogenetic function during cardiac development of mouse and zebrafish embryos. However,the molecular basis for this effect is still elusive. Our previous work described that in adult endothelial cells,SS regulates gene expression by inducing epigenetic modification of histones and activation of transcription complexes bearing acetyltransferase activity. In this study,we evaluated whether SS treatment could epigenetically modify histones and influence cell differentiation in mouse embryonic stem (ES) cells. Cells were exposed to a laminar SS of 10 dyne per cm2/s(-1),or kept in static conditions in the presence or absence of the histone deacetylase inhibitor trichostatin A (TSA). These experiments revealed that SS enhanced lysine acetylation of histone H3 at position 14 (K14),as well as serine phosphorylation at position 10 (S10) and lysine methylation at position 79 (K79),and cooperated with TSA,inducing acetylation of histone H4 and phosphoacetylation of S10 and K14 of histone H3. In addition,ES cells exposed to SS strongly activated transcription from the vascular endothelial growth factor (VEGF) receptor 2 promoter. This effect was paralleled by an early induction of cardiovascular markers,including smooth muscle actin,smooth muscle protein 22-alpha,platelet-endothelial cell adhesion molecule-1,VEGF receptor 2,myocyte enhancer factor-2C (MEF2C),and alpha-sarcomeric actin. In this condition,transcription factors MEF2C and Sma/MAD homolog protein 4 could be isolated from SS-treated ES cells complexed with the cAMP response element-binding protein acetyltransferase. These results provide molecular basis for the SS-dependent cardiovascular commitment of mouse ES cells and suggest that laminar flow may be successfully applied for the in vitro production of cardiovascular precursors.
View Publication
产品类型:
产品号#:
06902
06952
00321
00322
00323
00324
00325
产品名:
文献
Inoue T et al. (JAN 2006)
Stem cells (Dayton,Ohio) 24 1 95--104
Activation of canonical Wnt pathway promotes proliferation of retinal stem cells derived from adult mouse ciliary margin.
Adult retinal stem cells represent a possible cell source for the treatment of retinal degeneration. However,only a small number of stem cells reside in the ciliary margin. The present study aimed to promote the proliferation of adult retinal stem cells via the Wnt signaling pathway. Ciliary margin cells from 8-week-old mice were dissociated and cultured to allow sphere colony formation. Wnt3a,a glycogen synthase kinase (GSK) 3 inhibitor,fibroblast growth factor (FGF) 2,and a FGF receptor inhibitor were then applied in the culture media. The primary spheres were dissociated to prepare either monolayer or secondary sphere cultures. Wnt3a increased the size of the primary spheres and the number of Ki-67-positive proliferating cells in monolayer culture. The Wnt3a-treated primary sphere cells were capable of self-renewal and gave rise to fourfold the number of secondary spheres compared with nontreated sphere cells. These cells also retained their multilineage potential to express several retinal markers under differentiating culture conditions. The Wnt3a-treated cells showed nuclear accumulation of beta-catenin,and a GSK3 inhibitor,SB216763,mimicked the mitogenic activity of Wnt3a. The proliferative effect of SB216763 was attenuated by an FGF receptor inhibitor but was enhanced by FGF2,with Ki-67-positive cells reaching over 70% of the total cells. Wnt3a and SB216763 promoted the proliferation of retinal stem cells,and this was partly dependent on FGF2 signaling. A combination of Wnt and FGF signaling may provide a therapeutic strategy for in vitro expansion or in vivo activation of adult retinal stem cells.
View Publication
产品类型:
产品号#:
72872
产品名:
SB216763
文献
Re A et al. (NOV 2015)
Endocrine
Anacardic acid and thyroid hormone enhance cardiomyocytes production from undifferentiated mouse ES cells along functionally distinct pathways.
The epigenetics of early commitment to embryonal cardiomyocyte is poorly understood. In this work,we compared the effect of thyroid hormone and that of anacardic acid,a naturally occurring histone acetylase inhibitor,or both in combination,on mouse embryonic stem cells (mES) differentiating into embryonal cardiomyocyte by embryoid bodies (EBs) formation. Although the results indicated that anacardic acid (AA) and thyroid hormone were both efficient in promoting cardiomyocyte differentiation,we noticed that a transient exposure of mES to AA alone was sufficient to enlarge the beating areas of EBs compared to those of untreated controls. This effect was associated with changes in the chromatin structure at the promoters of specific cardiomyogenic genes. Among them,a rapid induction of the transcription factor Castor 1 (CASZ1),important for cardiomyocytes differentiation and maturation during embryonic development,was observed in the presence of AA. In contrast,thyroid hormone (T 3) was more effective in stimulating spontaneous firing,thus suggesting a role in the production of a population of cardiomyocyte with pacemaker properties. In conclusion,AA and thyroid hormone both enhanced cardiomyocyte formation along in apparently distinct pathways.
View Publication
产品类型:
产品号#:
产品名:
文献
Eggimann L et al. (MAY 2015)
Bone marrow transplantation 50 5 743--5
Kinetics of peripheral blood chimerism for surveillance of patients with leukemia and chronic myeloid malignancies after reduced-intensity conditioning allogeneic hematopoietic SCT.