Fraga AM et al. (NOV 2011)
Stem cell reviews 7 4 775--81
A survey of parameters involved in the establishment of new lines of human embryonic stem cells.
Since the derivation of the first human embryonic stem cell (hESC) lines by Thomson and coworkers in 1998,more than 1,200 different hESC lines have been established worldwide. Nevertheless,there is still a recognized interest in the establishment of new lines of hESC,particularly from HLA types and ethnic groups currently underrepresented among the available lines. The methodology of hESC derivation has evolved significantly since 1998,when human LIF (hLIF) was used for maintenance of pluripotency. However,there are a number of different strategies for the several steps involved in establishing a new line of hESC. Here we make a survey of the most relevant parameters used between 1998 and 2010 for the derivation of the 375 hESC lines deposited in two international stem cell registries,and able to form teratomas in immunocompromised mice. Although we identify some trends in the methodology for establishing hESC lines,our data reveal a much greater heterogeneity of strategies than what is used for derivation of murine ESC lines,indicating that optimum conditions have not been consolidated yet,and thus,hESC establishment is still an evolving field of research.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
文献
Subramanyam D et al. (MAY 2011)
Nature biotechnology 29 5 443--8
Multiple targets of miR-302 and miR-372 promote reprogramming of human fibroblasts to induced pluripotent stem cells.
The embryonic stem cell-specific cell cycle-regulating (ESCC) family of microRNAs (miRNAs) enhances reprogramming of mouse embryonic fibroblasts to induced pluripotent stem cells. Here we show that the human ESCC miRNA orthologs hsa-miR-302b and hsa-miR-372 promote human somatic cell reprogramming. Furthermore,these miRNAs repress multiple target genes,with downregulation of individual targets only partially recapitulating the total miRNA effects. These targets regulate various cellular processes,including cell cycle,epithelial-mesenchymal transition (EMT),epigenetic regulation and vesicular transport. ESCC miRNAs have a known role in regulating the unique embryonic stem cell cycle. We show that they also increase the kinetics of mesenchymal-epithelial transition during reprogramming and block TGFβ-induced EMT of human epithelial cells. These results demonstrate that the ESCC miRNAs promote dedifferentiation by acting on multiple downstream pathways. We propose that individual miRNAs generally act through numerous pathways that synergize to regulate and enforce cell fate decisions.
View Publication
产品类型:
产品号#:
72392
72394
产品名:
RepSox(盐酸盐)
RepSox(盐酸盐)
文献
Mitne-Neto M et al. (SEP 2011)
Human Molecular Genetics 20 18 3642--52
Downregulation of VAPB expression in motor neurons derived from induced pluripotent stem cells of ALS8 patients.
Amyotrophic lateral sclerosis (ALS) is an incurable neuromuscular disease that leads to a profound loss of life quality and premature death. Around 10% of the cases are inherited and ALS8 is an autosomal dominant form of familial ALS caused by mutations in the vamp-associated protein B/C (VAPB) gene. The VAPB protein is involved in many cellular processes and it likely contributes to the pathogenesis of other forms of ALS besides ALS8. A number of successful drug tests in ALS animal models could not be translated to humans underscoring the need for novel approaches. The induced pluripotent stem cells (iPSC) technology brings new hope,since it can be used to model and investigate diseases in vitro. Here we present an additional tool to study ALS based on ALS8-iPSC. Fibroblasts from ALS8 patients and their non-carrier siblings were successfully reprogrammed to a pluripotent state and differentiated into motor neurons. We show for the first time that VAPB protein levels are reduced in ALS8-derived motor neurons but,in contrast to over-expression systems,cytoplasmic aggregates could not be identified. Our results suggest that optimal levels of VAPB may play a central role in the pathogenesis of ALS8,in agreement with the observed reduction of VAPB in sporadic ALS.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Jaremko KL and Marikawa Y (MAY 2013)
Stem cell research 10 3 489--502
Regulation of developmental competence and commitment towards the definitive endoderm lineage in human embryonic stem cells.
Human embryonic stem cells (hESCs) can self-renew and become all three germ layers. Nodal/Activin signaling specifies developmental status in hESCs: moderate Nodal/Activin signaling maintains pluripotency,while enhancement and inhibition promote definitive endoderm (DE) and neuroectoderm (NE) development,respectively. However,how modulation of Nodal/Activin signaling influences developmental competence and commitment toward specific lineages is still unclear. Here,we showed that enhancement of Nodal/Activin signaling for 4 days was necessary and sufficient to upregulate DE markers,while it diminished the upregulation of NE markers by inhibition of Nodal/Activin signaling. This suggests that after 4 days of enhanced Nodal/Activin signaling,hESCs are committed to the DE lineage and have lost competence toward the NE lineage. In contrast,inhibition of Nodal/Activin signaling using LY364947 for 2 days was sufficient to impair competence toward the DE lineage,although cells were still able to activate LEFTY1 and NODAL,direct targets of Nodal/Activin signaling. Expression analyses indicated that the levels of pluripotency regulators NANOG and POU5F1 were significantly diminished by 2 days of LY364947 treatment,although the expression of NANOG,but not POU5F1,was restored immediately upon Activin A treatment. Thus,downregulation of POU5F1 coincided with the abrogation of DE competence caused by inhibition of Nodal/Activin signaling.
View Publication
产品类型:
产品号#:
72592
85850
85857
产品名:
LY364947
mTeSR™1
mTeSR™1
文献
Lepski G et al. (JAN 2013)
Frontiers in cellular neuroscience 7 155
cAMP promotes the differentiation of neural progenitor cells in vitro via modulation of voltage-gated calcium channels.
The molecular mechanisms underlying the differentiation of neural progenitor cells (NPCs) remain poorly understood. In this study we investigated the role of Ca(2+) and cAMP (cyclic adenosine monophosphate) in the differentiation of NPCs extracted from the subventricular zone of E14.5 rat embryos. Patch clamp recordings revealed that increasing cAMP-signaling with Forskolin or IBMX (3-isobutyl-1-methylxantine) significantly facilitated neuronal functional maturation. A continuous application of IBMX to the differentiation medium substantially increased the functional expression of voltage-gated Na(+) and K(+) channels,as well as neuronal firing frequency. Furthermore,we observed an increase in the frequency of spontaneous synaptic currents and in the amplitude of evoked glutamatergic and GABAergic synaptic currents. The most prominent acute effect of applying IBMX was an increase in L-type Ca(2+)currents. Conversely,blocking L-type channels strongly inhibited dendritic outgrowth and synapse formation even in the presence of IBMX,indicating that voltage-gated Ca(2+) influx plays a major role in neuronal differentiation. Finally,we found that nifedipine completely blocks IBMX-induced CREB phosphorylation (cAMP-response-element-binding protein),indicating that the activity of this important transcription factor equally depends on both enhanced cAMP and voltage-gated Ca(2+)-signaling. Taken together,these data indicate that the up-regulation of voltage-gated L-type Ca(2+)-channels and early electrical excitability are critical steps in the cAMP-dependent differentiation of SVZ-derived NPCs into functional neurons. To our knowledge,this is the first demonstration of the acute effects of cAMP on voltage-gated Ca(+2)channels in NPC-derived developing neurons.
View Publication
产品类型:
产品号#:
72762
72764
产品名:
IBMX
IBMX
文献
Noormohammadi A et al. (NOV 2016)
Nature Communications 7 13649
Somatic increase of CCT8 mimics proteostasis of human pluripotent stem cells and extends C. elegans lifespan
Human embryonic stem cells can replicate indefinitely while maintaining their undifferentiated state and,therefore,are immortal in culture. This capacity may demand avoidance of any imbalance in protein homeostasis (proteostasis) that would otherwise compromise stem cell identity. Here we show that human pluripotent stem cells exhibit enhanced assembly of the TRiC/CCT complex,a chaperonin that facilitates the folding of 10% of the proteome. We find that ectopic expression of a single subunit (CCT8) is sufficient to increase TRiC/CCT assembly. Moreover,increased TRiC/CCT complex is required to avoid aggregation of mutant Huntingtin protein. We further show that increased expression of CCT8 in somatic tissues extends Caenorhabditis elegans lifespan in a TRiC/CCT-dependent manner. Ectopic expression of CCT8 also ameliorates the age-associated demise of proteostasis and corrects proteostatic deficiencies in worm models of Huntington's disease. Our results suggest proteostasis is a common principle that links organismal longevity with hESC immortality.
View Publication
产品类型:
产品号#:
07920
85850
85857
05835
05839
产品名:
ACCUTASE™
mTeSR™1
mTeSR™1
STEMdiff™ 神经诱导培养基
STEMdiff™ 神经诱导培养基
文献
Ferreira RB et al. (APR 2017)
Oncotarget 8 17 28971--28989
Disulfide bond disrupting agents activate the unfolded protein response in EGFR- and HER2-positive breast tumor cells.
Many breast cancer deaths result from tumors acquiring resistance to available therapies. Thus,new therapeutic agents are needed for targeting drug-resistant breast cancers. Drug-refractory breast cancers include HER2+ tumors that have acquired resistance to HER2-targeted antibodies and kinase inhibitors,and Triple-Negative" Breast Cancers (TNBCs) that lack the therapeutic targets Estrogen Receptor�
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Mayani H et al. (JUN 1993)
Blood 81 12 3252--8
Cytokine-induced selective expansion and maturation of erythroid versus myeloid progenitors from purified cord blood precursor cells.
To study the role of different cytokine combinations on the proliferation and differentiation of highly purified primitive progenitor cells,a serum-free liquid culture system was used in combination with phenotypic and functional analysis of the cells produced in culture. CD34+ CD45RAlo CD71lo cells,purified from umbilical cord blood by flow cytometry and cell sorting,were selected for this study because of their high content of clonogenic cells (34%),particularly multipotent progenitors (CFU-MIX,12% of all cells). Four cytokine combinations were tested: (1) mast cell growth factor (MGF; a c-kit ligand) and interleukin-6 (IL-6); (2) MGF,IL-6,IL-3,and erythropoietin (Epo); (3) MGF,IL-6,granulocyte-macrophage colony-stimulating factor (GM-CSF)/IL-3 fusion protein (FP),macrophage colony-stimulating factor (M-CSF),and granulocyte-CSF (G-CSF); and (4) MGF,IL-6,FP,M-CSF,G-CSF,and Epo. Maximum numbers of erythroid progenitors (BFU-E,up to 55-fold increase) and mature erythroid cells were observed in the presence of MGF,IL-6,IL-3,and Epo,whereas maximum levels of myeloid progenitors (CFU-C,up to 70-fold increase) and mature myeloid cells were found in cultures supplemented with MGF,IL-6,FP,M-CSF,and G-CSF. When MGF,IL-6,FP,M-CSF,G-CSF,and Epo were present,maximum levels of both erythroid and myeloid progenitors and their progeny were observed. These results indicate that specific cytokine combinations can act directly on primitive hematopoietic cells resulting in significant expansion of progenitor cell numbers and influencing their overall patterns of proliferation and differentiation. Furthermore,the observations presented in this study suggest that the cytokine combinations used were unable to bias lineage commitment of multipotent progenitors,but rather had a permissive effect on the development of lineage-restricted clonogenic cells.
View Publication
产品类型:
产品号#:
04436
04064
04100
04230
04236
04431
04434
04444
04464
04531
04535
04545
04536
04564
04035
04330
04034
04044
04435
04445
04534
04544
产品名:
MethoCult™SF H4436
入门套件的MethoCult™H4034优化
MethoCult™H4100
MethoCult™H4230
MethoCult™SF H4236
MethoCult™H4431
MethoCult™H4434经典
MethoCult™H4434经典
入门套件为MethoCult™H4434经典
MethoCult™H4531
MethoCult™H4535富集无EPO
MethoCult™ H4535 Enriched,不含EPO
MethoCult™SF H4536
入门套件MethoCult™H4534经典无EPO
MethoCult™H4035 Optimum无EPO
MethoCult™H4330
MethoCult™H4034 Optimum
MethoCult™H4034 Optimum
MethoCult™H4435富集
MethoCult™H4435富集
MethoCult™H4534经典无EPO
MethoCult™H4534经典无EPO
文献
Yu Z et al. ( 2017)
Toxicology in Vitro 42 April 319--328
Prediction of delivery of organic aerosols onto air-liquid interface cells in vitro using an electrostatic precipitator
To better characterize biological responses to atmospheric organic aerosols,the efficient delivery of aerosol to in vitro lung cells is necessary. In this study,chamber generated secondary organic aerosol (SOA) entered the commercialized exposure chamber (CULTEX® Radial Flow System Compact) where it interfaced with an electrostatic precipitator (ESP) (CULTEX® Electrical Deposition Device) and then deposited on a particle collection plate. This plate contained human lung cells (BEAS-2B) that were cultured on a membrane insert to produce an air-liquid interface (ALI). To augment in vitro assessment using the ESP exposure device,the particle dose was predicted for various sampling parameters such as particle size,ESP deposition voltage,and sampling flowrate. The dose model was evaluated against the experimental measured mass of collected airborne particles. The high flowrate used in this study increased aerosol dose but failed to achieve cell stability. For example,RNA in the ALI BEAS-2B cells in vitro was stable at 0.15 L/minute but decayed at high flowrates. The ESP device and the resulting model were applied to in vitro studies (i.e.,viability and IL-8 expression) of toluene SOA using ALI BEAS-2B cells with a flowrate of 0.15 L/minute,and no cellular RNA decay occurred.
View Publication
产品类型:
产品号#:
05001
05021
05022
05008
产品名:
PneumaCult™-ALI 培养基
PneumaCult™-ALI 培养基含12 mm Transwell®插件
PneumaCult™-ALI 培养基含6.5 mm Transwell®插件
PneumaCult™交货中
文献
Bramble MS et al. (NOV 2016)
Scientific reports 6 36916
Sex-Specific Effects of Testosterone on the Sexually Dimorphic Transcriptome and Epigenome of Embryonic Neural Stem/Progenitor Cells.
The mechanisms by which sex differences in the mammalian brain arise are poorly understood,but are influenced by a combination of underlying genetic differences and gonadal hormone exposure. Using a mouse embryonic neural stem cell (eNSC) model to understand early events contributing to sexually dimorphic brain development,we identified novel interactions between chromosomal sex and hormonal exposure that are instrumental to early brain sex differences. RNA-sequencing identified 103 transcripts that were differentially expressed between XX and XY eNSCs at baseline (FDR%=%0.10). Treatment with testosterone-propionate (TP) reveals sex-specific gene expression changes,causing 2854 and 792 transcripts to become differentially expressed on XX and XY genetic backgrounds respectively. Within the TP responsive transcripts,there was enrichment for genes which function as epigenetic regulators that affect both histone modifications and DNA methylation patterning. We observed that TP caused a global decrease in 5-methylcytosine abundance in both sexes,a transmissible effect that was maintained in cellular progeny. Additionally,we determined that TP was associated with residue-specific alterations in acetylation of histone tails. These findings highlight an unknown component of androgen action on cells within the developmental CNS,and contribute to a novel mechanism of action by which early hormonal organization is initiated and maintained.
View Publication
产品类型:
产品号#:
05700
05701
05702
产品名:
NeuroCult™ 基础培养基(小鼠和大鼠)
NeuroCult™ 扩增添加物(小鼠和大鼠)
NeuroCult™扩增试剂盒(小鼠和大鼠)
文献
Hotta R et al. (APR 2016)
Neurogastroenterology and motility : the official journal of the European Gastrointestinal Motility Society 28 4 498--512
Isogenic enteric neural progenitor cells can replace missing neurons and glia in mice with Hirschsprung disease.
BACKGROUND Transplanting autologous patient-derived enteric neuronal stem/progenitor cells (ENSCs) is an innovative approach to replacing missing enteric neurons in patients with Hirschsprung disease (HSCR). Using autologous cells eliminates immunologic and ethical concerns raised by other cell sources. However,whether postnatal aganglionic bowel is permissive for transplanted ENSCs and whether ENSCs from HSCR patients can be successfully isolated,cultured,and transplanted in vivo remains unknown. METHODS ENSCs isolated from the ganglionic intestine of Ednrb(-/-) mice (HSCR-ENSCs) were characterized immunohistochemically and evaluated for their capacity to proliferate and differentiate in vitro. Fluorescently labeled ENSCs were co-cultured ex vivo with aganglionic Ednrb(-/-) colon. For in vivo transplantation,HSCR-ENSCs were labeled with lentivirus expressing green fluorescent protein (GFP) and implanted into aganglionic embryonic chick gut in ovo and postnatal aganglionic Ednrb(-/-) rectum in vivo. KEY RESULTS HSCR-ENSCs maintain normal capacity self-renewal and neuronal differentiation. Moreover,the Ednrb(-/-) aganglionic environment is permissive to engraftment by wild-type ENSCs ex vivo and supports migratrion and neuroglial differentiation of these cells following transplantation in vivo. Lentiviral GFP-labeled HSCR-ENSCs populated embryonic chick hindgut and postnatal colon of Ednrb(-/-) HSCR,with cells populating the intermuscular layer and forming enteric neurons and glia. CONCLUSIONS & INFERENCES ENSCs can be isolated and cultured from mice with HSCR,and transplanted into the aganglionic bowel of HSCR littermates to generate enteric neuronal networks. These results in an isogenic model establish the potential of using autologous-derived stem cells to treat HSCR and other intestinal neuropathies.
View Publication
产品类型:
产品号#:
05700
产品名:
NeuroCult™ 基础培养基(小鼠和大鼠)
文献
M. Klopotowska et al. (feb 2022)
Cancer immunology research 10 2 228--244
PRDX-1 Supports the Survival and Antitumor Activity of Primary and CAR-Modified NK Cells under Oxidative Stress.
Oxidative stress,caused by the imbalance between reactive species generation and the dysfunctional capacity of antioxidant defenses,is one of the characteristic features of cancer. Here,we quantified hydrogen peroxide in the tumor microenvironment (TME) and demonstrated that hydrogen peroxide concentrations are elevated in tumor interstitial fluid isolated from murine breast cancers in vivo,when compared with blood or normal subcutaneous fluid. Therefore,we investigated the effects of increased hydrogen peroxide concentration on immune cell functions. NK cells were more susceptible to hydrogen peroxide than T cells or B cells,and by comparing T,B,and NK cells' sensitivities to redox stress and their antioxidant capacities,we identified peroxiredoxin-1 (PRDX1) as a lacking element of NK cells' antioxidative defense. We observed that priming with IL15 protected NK cells' functions in the presence of high hydrogen peroxide and simultaneously upregulated PRDX1 expression. However,the effect of IL15 on PRDX1 expression was transient and strictly dependent on the presence of the cytokine. Therefore,we genetically modified NK cells to stably overexpress PRDX1,which led to increased survival and NK cell activity in redox stress conditions. Finally,we generated PD-L1-CAR NK cells overexpressing PRDX1 that displayed potent antitumor activity against breast cancer cells under oxidative stress. These results demonstrate that hydrogen peroxide,at concentrations detected in the TME,suppresses NK cell function and that genetic modification strategies can improve CAR NK cells' resistance and potency against solid tumors.
View Publication