Lippmann ES et al. (FEB 2014)
Scientific reports 4 February 2014 4160
A retinoic acid-enhanced, multicellular human blood-brain barrier model derived from stem cell sources.
Blood-brain barrier (BBB) models are often used to investigate BBB function and screen brain-penetrating therapeutics,but it has been difficult to construct a human model that possesses an optimal BBB phenotype and is readily scalable. To address this challenge,we developed a human in vitro BBB model comprising brain microvascular endothelial cells (BMECs),pericytes,astrocytes and neurons derived from renewable cell sources. First,retinoic acid (RA) was used to substantially enhance BBB phenotypes in human pluripotent stem cell (hPSC)-derived BMECs,particularly through adherens junction,tight junction,and multidrug resistance protein regulation. RA-treated hPSC-derived BMECs were subsequently co-cultured with primary human brain pericytes and human astrocytes and neurons derived from human neural progenitor cells (NPCs) to yield a fully human BBB model that possessed significant tightness as measured by transendothelial electrical resistance (˜5,000 $\$(2)). Overall,this scalable human BBB model may enable a wide range of neuroscience studies.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Cao X et al. (JAN 2015)
Respiratory research 16 30
Tight junction disruption by cadmium in an in vitro human airway tissue model.
BACKGROUND: The cadmium (Cd) present in air pollutants and cigarette smoke has the potential of causing multiple adverse health outcomes involving damage to pulmonary and cardiovascular tissue. Injury to pulmonary epithelium may include alterations in tight junction (TJ) integrity,resulting in impaired epithelial barrier function and enhanced penetration of chemicals and biomolecules. Herein,we investigated mechanisms involved in the disruption of TJ integrity by Cd exposure using an in vitro human air-liquid-interface (ALI) airway tissue model derived from normal primary human bronchial epithelial cells. METHODS: ALI cultures were exposed to noncytotoxic doses of CdCl2 basolaterally and TJ integrity was measured by Trans-Epithelial Electrical Resistance (TEER) and immunofluorescence staining with TJ markers. PCR array analysis was used to identify genes involved with TJ collapse. To explore the involvement of kinase signaling pathways,cultures were treated with CdCl2 in the presence of kinase inhibitors specific for cellular Src or Protein Kinase C (PKC). RESULTS: Noncytotoxic doses of CdCl2 resulted in the collapse of barrier function,as demonstrated by TEER measurements and Zonula occludens-1 (ZO-1) and occludin staining. CdCl2 exposure altered the expression of several groups of genes encoding proteins involved in TJ homeostasis. In particular,down-regulation of select junction-interacting proteins suggested that a possible mechanism for Cd toxicity involves disruption of the peripheral junctional complexes implicated in connecting membrane-bound TJ components to the actin cytoskeleton. Inhibition of kinase signaling using inhibitors specific for cellular Src or PKC preserved the integrity of TJs,possibly by preventing occludin tyrosine hyperphosphorylation,rather than reversing the down-regulation of the junction-interacting proteins. CONCLUSIONS: Our findings indicate that acute doses of Cd likely disrupt TJ integrity in human ALI airway cultures both through occludin hyperphosphorylation via kinase activation and by direct disruption of the junction-interacting complex.
View Publication
产品类型:
产品号#:
05001
05021
05022
产品名:
PneumaCult™-ALI 培养基
PneumaCult™-ALI 培养基含12 mm Transwell®插件
PneumaCult™-ALI 培养基含6.5 mm Transwell®插件
文献
Yang Y et al. (MAY 2015)
Proceedings of the National Academy of Sciences of the United States of America 112 18 E2337--------46
Heightened potency of human pluripotent stem cell lines created by transient BMP4 exposure
Human pluripotent stem cells (PSCs) show epiblast-type pluripotency that is maintained with ACTIVIN/FGF2 signaling. Here,we report the acquisition of a unique stem cell phenotype by both human ES cells (hESCs) and induced pluripotent stem cells (iPSCs) in response to transient (24-36 h) exposure to bone morphogenetic protein 4 (BMP4) plus inhibitors of ACTIVIN signaling (A83-01) and FGF2 (PD173074),followed by trypsin dissociation and recovery of colonies capable of growing on a gelatin substratum in standard medium for human PSCs at low but not high FGF2 concentrations. The self-renewing cell lines stain weakly for CDX2 and strongly for NANOG,can be propagated clonally on either Matrigel or gelatin,and are morphologically distinct from human PSC progenitors on either substratum but still meet standard in vitro criteria for pluripotency. They form well-differentiated teratomas in immune-compromised mice that secrete human chorionic gonadotropin (hCG) into the host mouse and include small areas of trophoblast-like cells. The cells have a distinct transcriptome profile from the human PSCs from which they were derived (including higher expression of NANOG,LEFTY1,and LEFTY2). In nonconditioned medium lacking FGF2,the colonies spontaneously differentiated along multiple lineages,including trophoblast. They responded to PD173074 in the absence of both FGF2 and BMP4 by conversion to trophoblast,and especially syncytiotrophoblast,whereas an A83-01/PD173074 combination favored increased expression of HLA-G,a marker of extravillous trophoblast. Together,these data suggest that the cell lines exhibit totipotent potential and that BMP4 can prime human PSCs to a self-renewing alternative state permissive for trophoblast development. The results may have implications for regulation of lineage decisions in the early embryo.
View Publication
产品类型:
产品号#:
07923
85850
85857
产品名:
Dispase (1 U/mL)
mTeSR™1
mTeSR™1
文献
Swann J et al. ( 2016)
Virology journal 13 1 30
Cytosolic sulfotransferase 1A1 regulates HIV-1 minus-strand DNA elongation in primary human monocyte-derived macrophages.
BACKGROUND: The cellular sulfonation pathway modulates key steps of virus replication. This pathway comprises two main families of sulfonate-conjugating enzymes: Golgi sulfotransferases,which sulfonate proteins,glycoproteins,glycolipids and proteoglycans; and cytosolic sulfotransferases (SULTs),which sulfonate various small molecules including hormones,neurotransmitters,and xenobiotics. Sulfonation controls the functions of numerous cellular factors such as those involved in cell-cell interactions,cell signaling,and small molecule detoxification. We previously showed that the cellular sulfonation pathway regulates HIV-1 gene expression and reactivation from latency. Here we show that a specific cellular sulfotransferase can regulate HIV-1 replication in primary human monocyte-derived macrophages (MDMs) by yet another mechanism,namely reverse transcription. METHODS: MDMs were derived from monocytes isolated from donor peripheral blood mononuclear cells (PBMCs) obtained from the San Diego Blood Bank. After one week in vitro cell culture under macrophage-polarizing conditions,MDMs were transfected with sulfotranserase-specific or control siRNAs and infected with HIV-1 or SIV constructs expressing a luciferase reporter. Infection levels were subsequently monitored by luminescence. Western blotting was used to assay siRNA knockdown and viral protein levels,and qPCR was used to measure viral RNA and DNA products. RESULTS: We demonstrate that the cytosolic sulfotransferase SULT1A1 is highly expressed in primary human MDMs,and through siRNA knockdown experiments,we show that this enzyme promotes infection of MDMs by single cycle VSV-G pseudotyped human HIV-1 and simian immunodeficiency virus vectors and by replication-competent HIV-1. Quantitative PCR analysis revealed that SULT1A1 affects HIV-1 replication in MDMs by modulating the kinetics of minus-strand DNA elongation during reverse transcription. CONCLUSIONS: These studies have identified SULT1A1 as a cellular regulator of HIV-1 reverse transcription in primary human MDMs. The normal substrates of this enzyme are small phenolic-like molecules,raising the possibility that one or more of these substrates may be involved. Targeting SULT1A1 and/or its substrate(s) may offer a novel host-directed strategy to improve HIV-1 therapeutics.
View Publication
产品类型:
产品号#:
19052
19052RF
产品名:
EasySep™人CD4+ T细胞富集试剂盒
RoboSep™ 人CD4+ T细胞富集试剂盒含滤芯吸头
文献
Shetty DK and Inamdar MS (MAR 2016)
Stem Cell Research 16 2 290--292
Generation of human embryonic stem cell line expressing a red fluorescent protein: BJNhem20-pCAG-tdTomato
Human embryonic stem cell line BJNhem20-pCAG-tdTomato was generated using non-viral method. The construct pCAG-tdTomato was transfected using microporation procedure. This fluorescent hESC line can help to study heterogeneity within individual cells in hESC colonies by enabling live tracking of their growth,migration and differentiation properties. This cell line also serves as a resource for additional transgene introduction/knock-out/knock-in generation in a fluorescent background and allows ease of analysis in studies involving cell mixing.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Chen S et al. (APR 2009)
Nature chemical biology 5 4 258--65
A small molecule that directs differentiation of human ESCs into the pancreatic lineage.
Stepwise differentiation from embryonic stem cells (ESCs) to functional insulin-secreting beta cells will identify key steps in beta-cell development and may yet prove useful for transplantation therapy for diabetics. An essential step in this schema is the generation of pancreatic progenitors--cells that express Pdx1 and produce all the cell types of the pancreas. High-content chemical screening identified a small molecule,(-)-indolactam V,that induces differentiation of a substantial number of Pdx1-expressing cells from human ESCs. The Pdx1-expressing cells express other pancreatic markers and contribute to endocrine,exocrine and duct cells,in vitro and in vivo. Further analyses showed that (-)-indolactam V works specifically at one stage of pancreatic development,inducing pancreatic progenitors from definitive endoderm. This study describes a chemical screening platform to investigate human ESC differentiation and demonstrates the generation of a cell population that is a key milepost on the path to making beta cells.
View Publication
产品类型:
产品号#:
72314
产品名:
(-) -Indolactam V(吲哚内酰胺 V)
文献
Babiarz JE et al. (JUL 2012)
Stem cells and development 21 11 1956--1965
Determination of the human cardiomyocyte mRNA and miRNA differentiation network by fine-scale profiling.
To gain insight into the molecular regulation of human heart development,a detailed comparison of the mRNA and miRNA transcriptomes across differentiating human-induced pluripotent stem cell (hiPSC)-derived cardiomyocytes and biopsies from fetal,adult,and hypertensive human hearts was performed. Gene ontology analysis of the mRNA expression levels of the hiPSCs differentiating into cardiomyocytes revealed 3 distinct groups of genes: pluripotent specific,transitional cardiac specification,and mature cardiomyocyte specific. Hierarchical clustering of the mRNA data revealed that the transcriptome of hiPSC cardiomyocytes largely stabilizes 20 days after initiation of differentiation. Nevertheless,analysis of cells continuously cultured for 120 days indicated that the cardiomyocytes continued to mature toward a more adult-like gene expression pattern. Analysis of cardiomyocyte-specific miRNAs (miR-1,miR-133a/b,and miR-208a/b) revealed an miRNA pattern indicative of stem cell to cardiomyocyte specification. A biostatistitical approach integrated the miRNA and mRNA expression profiles revealing a cardiomyocyte differentiation miRNA network and identified putative mRNAs targeted by multiple miRNAs. Together,these data reveal the miRNA network in human heart development and support the notion that overlapping miRNA networks re-enforce transcriptional control during developmental specification.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
文献
Palmer JA et al. (AUG 2012)
Alcoholism,clinical and experimental research 36 8 1314--1324
Metabolic biomarkers of prenatal alcohol exposure in human embryonic stem cell-derived neural lineages.
BACKGROUND: Fetal alcohol spectrum disorders (FASD) are a leading cause of neurodevelopmental disability. The mechanisms underlying FASD are incompletely understood,and biomarkers to identify those at risk are lacking. Here,we perform metabolomic analysis of embryoid bodies and neural lineages derived from human embryonic stem (hES) cells to identify the neural secretome produced in response to ethanol (EtOH) exposure. METHODS: WA01 and WA09 hES cells were differentiated into embryoid bodies,neural progenitors,or neurons. Cells along this progression were cultured for 4 days with 0,0.1,or 0.3% EtOH. Supernatants were subjected to C18 chromatography followed by ESI-QTOF-MS. Features were annotated using public databases,and the identities of 4 putative biomarkers were confirmed with purified standards and comparative MS/MS. RESULTS: EtOH treatment induced statistically significant changes to metabolite abundance in human embryoid bodies (180 features),neural progenitors (76 features),and neurons (42 features). There were no shared significant features between different cell types. Fifteen features showed a dose-response to EtOH. Four chemical identities were confirmed: L-thyroxine,5'-methylthioadenosine,and the tryptophan metabolites,L-kynurenine and indoleacetaldehyde. One feature with a putative annotation of succinyladenosine was significantly increased in both EtOH treatments. Additional features were selective to EtOH treatment but were not annotated in public databases. CONCLUSIONS: EtOH exposure induces statistically significant changes to the metabolome profile of human embryoid bodies,neural progenitors,and neurons. Several of these metabolites are normally present in human serum,suggesting their usefulness as potential serum FASD biomarkers. These findings suggest the biochemical pathways that are affected by EtOH in the developing nervous system and delineate mechanisms of alcohol injury during human development.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Malerba I et al. (OCT 2002)
Toxicological sciences : an official journal of the Society of Toxicology 69 2 433--8
In vitro myelotoxicity of propanil and 3,4-dichloroaniline on murine and human CFU-E/BFU-E progenitors.
Because of the wide use of pesticides for domestic and industrial purposes,the evaluation of their potential effects is of major concern for public health. The myelotoxicity of the herbicide propanil (3,4-dichloroproprioanilide) and its metabolite 3,4-dichloroaniline (DCA) is well documented in mice,but evidence that pesticides may severely compromise hematopoiesis in humans is lacking. In this study,an interspecies comparison of in vitro toxicity of these two compounds on murine and human burst- and colony-forming unit-erythrocyte (BFU-E,CFU-E) and colony-forming unit-granulocyte/macrophage (CFU-GM) progenitors,has been carried out. Murine bone marrow progenitors and human cord blood cells were exposed to propanil or DCA in doses ranging from 10 micro M to 1000 micro M,and the toxic effect was detected by a clonogenic assay with continuous exposure to the compounds. The results on murine cells indicate that the erythrocytic lineage is the most sensitive target for propanil and DCA. On the other hand,human progenitors seem to be less sensitive to the toxic effects of both compounds than murine progenitors at the same concentrations (IC(50) values are 305.2 +/- 22.6 micro M [total erythroid colonies] and textgreater500 micro M [CFU-GM] for propanil). Propanil was significantly more toxic to human erythroid progenitors than to human CFU-GM progenitors,as was found for the murine cells,emphasizing the role of the heme pathway as the target for propanil. These data confirm the evidence that the compounds investigated interfere with erythroid colony formation at different stages of the differentiation pathway and have different effects according to the dose.
View Publication
产品类型:
产品号#:
04564
04534
04544
产品名:
入门套件MethoCult™H4534经典无EPO
MethoCult™H4534经典无EPO
MethoCult™H4534经典无EPO
文献
Mazzotta S et al. (OCT 2016)
Stem cell reports 7 4 764--776
Distinctive Roles of Canonical and Noncanonical Wnt Signaling in Human Embryonic Cardiomyocyte Development.
Wnt signaling is a key regulator of vertebrate heart development; however,specific roles for human cardiomyocyte development remain uncertain. Here we use human embryonic stem cells (hESCs) to analyze systematically in human cardiomyocyte development the expression of endogenous Wnt signaling components,monitor pathway activity,and dissect stage-specific requirements for canonical and noncanonical Wnt signaling mechanisms using small-molecule inhibitors. Our analysis suggests that WNT3 and WNT8A,via FZD7 and canonical signaling,regulate BRACHYURY expression and mesoderm induction; that WNT5A/5B,via ROR2 and noncanonical signaling,regulate MESP1 expression and cardiovascular development; and that later in development WNT2,WNT5A/5B,and WNT11,via FZD4 and FZD6,regulate functional cardiomyocyte differentiation via noncanonical Wnt signaling. Our findings confirm in human development previously proposed roles for canonical Wnt signaling in sequential stages of vertebrate cardiomyogenesis,and identify more precise roles for noncanonical signaling and for individual Wnt signal and Wnt receptor genes in human cardiomyocyte development.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Drake A et al. ( 2016)
PloS one 11 11 e0166280
Interleukins 7 and 15 Maintain Human T Cell Proliferative Capacity through STAT5 Signaling.
T lymphocytes require signals from self-peptides and cytokines,most notably interleukins 7 and 15 (IL-7,IL-15),for survival. While mouse T cells die rapidly if IL-7 or IL-15 is withdrawn,human T cells can survive prolonged withdrawal of IL-7 and IL-15. Here we show that IL-7 and IL-15 are required to maintain human T cell proliferative capacity through the STAT5 signaling pathway. T cells from humanized mice proliferate better if stimulated in the presence of human IL-7 or IL-15 or if T cells are exposed to human IL-7 or IL-15 in mice. Freshly isolated T cells from human peripheral blood lose proliferative capacity if cultured for 24 hours in the absence of IL-7 or IL-15. We further show that phosphorylation of STAT5 correlates with proliferation and inhibition of STAT5 reduces proliferation. These results reveal a novel role of IL-7 and IL-15 in maintaining human T cell function,provide an explanation for T cell dysfunction in humanized mice,and have significant implications for in vitro studies with human T cells.
View Publication
产品类型:
产品号#:
17951
17951RF
19851
19851RF
15624
15664
产品名:
EasySep™人T细胞分选试剂盒
RoboSep™ 人T细胞分选试剂盒
EasySep™小鼠T细胞分选试剂盒
RoboSep™ 小鼠T细胞分选试剂盒
RosetteSep™人粒细胞去除抗体混合物
RosetteSep™人粒细胞去除抗体混合物
文献
Wang G et al. (JAN 2017)
Nature protocols 12 1 88--103
Efficient, footprint-free human iPSC genome editing by consolidation of Cas9/CRISPR and piggyBac technologies.
Genome editing of human induced pluripotent stem cells (hiPSCs) offers unprecedented opportunities for in vitro disease modeling and personalized cell replacement therapy. The introduction of Cas9-directed genome editing has expanded adoption of this approach. However,marker-free genome editing using standard protocols remains inefficient,yielding desired targeted alleles at a rate of ∼1-5%. We developed a protocol based on a doxycycline-inducible Cas9 transgene carried on a piggyBac transposon to enable robust and highly efficient Cas9-directed genome editing,so that a parental line can be expeditiously engineered to harbor many separate mutations. Treatment with doxycycline and transfection with guide RNA (gRNA),donor DNA and piggyBac transposase resulted in efficient,targeted genome editing and concurrent scarless transgene excision. Using this approach,in 7 weeks it is possible to efficiently obtain genome-edited clones with minimal off-target mutagenesis and with indel mutation frequencies of 40-50% and homology-directed repair (HDR) frequencies of 10-20%.
View Publication