Malik J et al. (NOV 2013)
Haematologica 98 11 1778--1787
Erythropoietin critically regulates the terminal maturation of murine and human primitive erythroblasts
Primitive erythroid cells,the first red blood cells produced in the mammalian embryo,are necessary for embryonic survival. Erythropoietin and its receptor EpoR,are absolutely required for survival of late-stage definitive erythroid progenitors in the fetal liver and adult bone marrow. Epo- and Epor-null mice die at E13.5 with a lack of definitive erythrocytes. However,the persistence of circulating primitive erythroblasts raises questions about the role of erythropoietin/EpoR in primitive erythropoiesis. Using Epor-null mice and a novel primitive erythroid 2-step culture we found that erythropoietin is not necessary for specification of primitive erythroid progenitors. However,Epor-null embryos develop a progressive,profound anemia by E12.5 as primitive erythroblasts mature as a synchronous cohort. This anemia results from reduced primitive erythroblast proliferation associated with increased p27 expression,from advanced cellular maturation,and from markedly elevated rates of apoptosis associated with an imbalance in pro- and anti-apoptotic gene expression. Both mouse and human primitive erythroblasts cultured without erythropoietin also undergo accelerated maturation and apoptosis at later stages of maturation. We conclude that erythropoietin plays an evolutionarily conserved role in promoting the proliferation,survival,and appropriate timing of terminal maturation of primitive erythroid precursors.
View Publication
High-throughput fingerprinting of human pluripotent stem cell fate responses and lineage bias.
Populations of cells create local environments that lead to emergent heterogeneity. This is particularly evident with human pluripotent stem cells (hPSCs): microenvironmental heterogeneity limits hPSC cell fate control. We developed a high-throughput platform to screen hPSCs in configurable microenvironments in which we optimized colony size,cell density and other parameters to achieve rapid and robust cell fate responses to exogenous cues. We used this platform to perform single-cell protein expression profiling,revealing that Oct4 and Sox2 costaining discriminates pluripotent,neuroectoderm,primitive streak and extraembryonic cell fates. We applied this Oct4-Sox2 code to analyze dose responses of 27 developmental factors to obtain lineage-specific concentration optima and to quantify cell line–specific endogenous signaling pathway activation and differentiation bias. We demonstrated that short-term responses predict definitive endoderm induction efficiency and can be used to rescue differentiation of cell lines reticent to cardiac induction. This platform will facilitate high-throughput hPSC-based screening and quantification of lineage-induction bias.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Lee S-K et al. (MAR 2015)
EBioMedicine 2 3 225--33
Response of Neutrophils to Extracellular Haemoglobin and LTA in Human Blood System.
BACKGROUND Haemolytic infection lyses red blood cells,releasing haemoglobin (Hb) into the plasma. Although recent studies showed that immune cells recognize redox-active cytotoxic extracellular Hb (metHb) bound to pathogen-associated molecular patterns (PAMPs),currently available information is limited to experiments performed in defined conditions using single cell lines. Therefore,a systemic approach targeting primary whole blood cells is required to better understand the cellular immune defence against metHb and PAMPs,when under a haemolytic infection. METHODS We investigated how human white blood cells,including neutrophils,respond to metHb and lipoteichoic acid (LTA) by measuring reactive oxygen species (ROS),signalling mediators (ERK and p38),NF-κB,cytokines,elastase secretion and cell activation markers. FINDINGS metHb activates NF-κB in TLR2-expressing HEK293 cells but not in normal or TLR9-expressing HEK293 cells. Treatment of isolated neutrophils with metHb increased production of ROS and expressions of IL-8,TNFα,and CD11b,which were further enhanced by metHb + LTA complex. While LTA stimulated the survival of neutrophils,it caused apoptotic cell death when complexed with metHb. The activation of neutrophils by metHb + LTA was subdued by the presence of other types of white blood cells. INTERPRETATION metHb and metHb + LTA complex are ligands of TLR2,inducing an unconventional TLR signalling pathway. Neutrophils are a highly sensitive cell type to metHb + LTA complex. During a haemolytic infection,white blood cells in the vicinity crosstalk to modulate neutrophil TLR-signalling induced by metHb and LTA.
View Publication
产品类型:
产品号#:
07806
07906
产品名:
HetaSep™
HetaSep™
文献
Finkbeiner SR et al. (NOV 2015)
Biology open 4 11 bio.013235--
Generation of tissue-engineered small intestine using embryonic stem cell-derived human intestinal organoids.
Short bowel syndrome (SBS) is characterized by poor nutrient absorption due to a deficit of healthy intestine. Current treatment practices rely on providing supportive medical therapy with parenteral nutrition; while life saving,such interventions are not curative and are still associated with significant co-morbidities. As approaches to lengthen remaining intestinal tissue have been met with only limited success and intestinal transplants have poor survival outcomes,new approaches to treating SBS are necessary. Human intestine derived from embryonic stem cells (hESCs) or induced pluripotent stem cells (iPSCs),called human intestinal organoids (HIOs),have the potential to offer a personalized and scalable source of intestine for regenerative therapies. However,given that HIOs are small three-dimensional structures grown in vitro,methods to generate usable HIO-derived constructs are needed. We investigated the ability of hESCs or HIOs to populate acellular porcine intestinal matrices and artificial polyglycolic/poly L lactic acid (PGA/PLLA) scaffolds,and examined the ability of matrix/scaffolds to thrive when transplanted in vivo. Our results demonstrate that the acellular matrix alone is not sufficient to instruct hESC differentiation towards an endodermal or intestinal fate. We observed that while HIOs reseed acellular porcine matrices in vitro,the HIO-reseeded matrices do not thrive when transplanted in vivo. In contrast,HIO-seeded PGA/PLLA scaffolds thrive in vivo and develop into tissue that looks nearly identical to adult human intestinal tissue. Our results suggest that HIO-seeded PGA/PLLA scaffolds are a promising avenue for developing the mucosal component of tissue engineered human small intestine,which need to be explored further to develop them into fully functional tissue.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Zimmermann M et al. (JAN 2016)
Scientific Reports 6 19674
IFNα enhances the production of IL-6 by human neutrophils activated via TLR8.
Recently,we reported that human neutrophils produce biologically active amounts of IL-6 when incubated with agonists activating TLR8,a receptor recognizing viral single strand RNA. In this study,we demonstrate that IFNα,a cytokine that modulates the early innate immune responses toward viral and bacterial infections,potently enhances the production of IL-6 in neutrophils stimulated with R848,a TLR8 agonist. We also show that such an effect is not caused by an IFNα-dependent induction of TLR7 and its consequent co-activation with TLR8 in response to R848,but,rather,it is substantially mediated by an increased production and release of endogenous TNFα. The latter cytokine,in an autocrine manner,leads to an augmented synthesis of the IkBζ co-activator and an enhanced recruitment of the C/EBPβ transcription factor to the IL-6 promoter. Moreover,we show that neutrophils from SLE patients with active disease state,hence displaying an IFN-induced gene expression signature,produce increased amounts of both IL-6 and TNFα in response to R848 as compared to healthy donors. Altogether,data uncover novel effects that type I IFN exerts in TLR8-activated neutrophils,which therefore enlarge our knowledge on the various biological actions which type I IFN orchestrates during infectious and autoimmune diseases.
View Publication
Iacovitti L et al. (AUG 2001)
Brain research 912 1 99--104
Differentiation of human dopamine neurons from an embryonic carcinomal stem cell line.
Previous studies from this laboratory have demonstrated that fibroblast growth factor 1 together with a number of co-activator molecules (dopamine,TPA,IBMX/forskolin),will induce the expression of the catecholamine biosynthetic enzyme tyrosine hydroxylase (TH) in 10% of human neurons (hNTs) derived from the NT2 cell line [10]. In the present study,we found that TH induction was increased to nearly 75% in hNTs when cells were permitted to age 2 weeks in culture prior to treatment with the differentiation cocktail. This high level of TH expression was sustained 7 days after removal of the differentiating agents from the media. Moreover,the induced TH present in these cells was enzymatically active,resulting in the production of low levels of dopamine (DA) and its metabolite DOPAC. These findings suggest that hNTs may provide an important tissue culture model for the study of factors regulating TH gene expression in human neurons. Moreover,hNTs may serve,in vivo,as a source of human DA neurons for use in transplantation therapies.
View Publication
产品类型:
产品号#:
72762
72764
产品名:
IBMX
IBMX
文献
Inaba N et al. (APR 2003)
Blood 101 7 2870--6
A novel I-branching beta-1,6-N-acetylglucosaminyltransferase involved in human blood group I antigen expression.
The human blood group i and I antigens are determined by linear and branched poly-N-acetyllactosamine structures,respectively. In erythrocytes,the fetal i antigen is converted to the adult I antigen by I-branching beta-1,6-N-acetylglucosaminyltransferase (IGnT) during development. Dysfunction of the I-branching enzyme may result in the adult i phenotype in erythrocytes. However,the I gene responsible for blood group I antigen has not been fully confirmed. We report here a novel human I-branching enzyme,designated IGnT3. The genes for IGnT1 (reported in 1993),IGnT2 (also presented in this study),and IGnT3 consist of 3 exons and share the second and third exons. Bone marrow cells preferentially expressed IGnT3 transcript. During erythroid differentiation using CD34(+) cells,IGnT3 was markedly up-regulated with concomitant decrease in IGnT1/2. Moreover,reticulocytes expressed the IGnT3 transcript,but IGnT1/2 was below detectable levels. By molecular genetic analyses of an adult i pedigree,individuals with the adult i phenotype were revealed to have heterozygous alleles with mutations in exon 2 (1006GtextgreaterA; Gly336Arg) and exon 3 (1049GtextgreaterA; Gly350Glu),respectively,of the IGnT3 gene. Chinese hamster ovary (CHO) cells transfected with each mutated IGnT3 cDNA failed to express I antigen. These findings indicate that the expression of the blood group I antigen in erythrocytes is determined by a novel IGnT3,not by IGnT1 or IGnT2.
View Publication
Neutralizing human antibodies prevent Zika virus replication and fetal disease in mice.
Zika virus (ZIKV) is an emerging mosquito-transmitted flavivirus that can cause severe disease,including congenital birth defects during pregnancy(1). To develop candidate therapeutic agents against ZIKV,we isolated a panel of human monoclonal antibodies (mAbs) from subjects with prior ZIKV infection. A subset of mAbs recognized diverse epitopes on the envelope (E) protein and exhibited potently neutralizing activity. One of the most inhibitory mAbs,ZIKV-117,broadly neutralized infection of ZIKV strains corresponding to African,Asian,and American lineages. Epitope mapping studies revealed that ZIKV-117 recognized a unique quaternary epitope on the E protein dimer-dimer interface. We evaluated the therapeutic efficacy of ZIKV-117 in pregnant and non-pregnant mice. mAb treatment markedly reduced tissue pathology,placental and fetal infection,and mortality in mice. Thus,neutralizing human mAbs can protect against maternal-fetal transmission,infection and disease,and reveal important determinants for structure-based rational vaccine design efforts.
View Publication
产品类型:
产品号#:
03800
03801
03802
03803
03804
03805
03806
产品名:
ClonaCell™-HY杂交瘤试剂盒
ClonaCell™-HY Medium
ClonaCell™-HY Medium
ClonaCell™-HY Medium
ClonaCell™-HY Medium
ClonaCell™-HY Medium
ClonaCell™衔接挂钩
文献
Ang Y-S et al. (DEC 2016)
Cell 167 7 1734--1749.e22
Disease Model of GATA4 Mutation Reveals Transcription Factor Cooperativity in Human Cardiogenesis.
Mutation of highly conserved residues in transcription factors may affect protein-protein or protein-DNA interactions,leading to gene network dysregulation and human disease. Human mutations in GATA4,a cardiogenic transcription factor,cause cardiac septal defects and cardiomyopathy. Here,iPS-derived cardiomyocytes from subjects with a heterozygous GATA4-G296S missense mutation showed impaired contractility,calcium handling,and metabolic activity. In human cardiomyocytes,GATA4 broadly co-occupied cardiac enhancers with TBX5,another transcription factor that causes septal defects when mutated. The GATA4-G296S mutation disrupted TBX5 recruitment,particularly to cardiac super-enhancers,concomitant with dysregulation of genes related to the phenotypic abnormalities,including cardiac septation. Conversely,the GATA4-G296S mutation led to failure of GATA4 and TBX5-mediated repression at non-cardiac genes and enhanced open chromatin states at endothelial/endocardial promoters. These results reveal how disease-causing missense mutations can disrupt transcriptional cooperativity,leading to aberrant chromatin states and cellular dysfunction,including those related to morphogenetic defects.
View Publication