Lim CK et al. (JAN 2008)
Journal of hematology & oncology 1 19
Effect of anti-CD52 antibody alemtuzumab on ex-vivo culture of umbilical cord blood stem cells.
BACKGROUND: Excessive maturation of hematopoietic cells leads to a reduction of long-term proliferative capability during cord blood (CB) expansion. In this study,we report the effects of anit-CD52 (Alemtuzumab,Campath) on both short- and long-term ex vivo expansion of CB hematopoietic stem cells (HSC) by evaluating the potential role of Alemtuzumab in preserving the repopulating capability in CB HSC and nonlymphoid progenitors. METHODS: Ex vivo expansion experiments were carried out using freshly purified CB CD34(+)cells in StemSpantrade mark SFEM medium in the presence of stem cell factor,Flt3-Ligand and thrombopoietin at 50 ng/ml. Alemtuzumab (10 microg/ml) was used to deplete CD52(+) cells during the cultures. Flow cytometry was used to monitor CB HSC and their differentiation. Colony forming unit (CFU) assays and long term culture-initiating cell (LTC-IC) assays were performed on cells obtained from day 0 (before culture) and day 14 after cultures. Secondary cultures was performed using CD34(+) cells isolated at 35 days from primary cultures and further cultured in StemSpantrade mark SFEM medium for another 14 days to confirm the long term effect of alemtuzumab in liquid cultures. RESULTS: Compared to cytokines alone,addition of alemtuzumab resulted in a significant increase in total nucleated cells,absolute CD34(+) cells,myeloid and megakaryocytic progenitors,multi-lineage and myeloid CFU and LTC-IC. CONCLUSION: The results from current study suggested that the use of alemtuzumab for ex vivo expansion of CBHSC maybe advantageous. Our findings may improve current technologies for CBHSC expansion and increase the availability of CB units for transplantation. However,in vivo studies using animal models are likely needed in further studies to test the hematopoietic effects using such expanded CB products.
View Publication
产品类型:
产品号#:
01702
04435
04445
产品名:
ALDEFLUOR™测定缓冲液
MethoCult™H4435富集
MethoCult™H4435富集
文献
Wilson K et al. (MAY 2008)
Journal of visualized experiments : JoVE 14 1--3
In vitro and in vivo bioluminescence reporter gene imaging of human embryonic stem cells.
The discovery of human embryonic stem cells (hESCs) has dramatically increased the tools available to medical scientists interested in regenerative medicine. However,direct injection of hESCs,and cells differentiated from hESCs,into living organisms has thus far been hampered by significant cell death,teratoma formation,and host immune rejection. Understanding the in vivo hESC behavior after transplantation requires novel imaging techniques to longitudinally monitor hESC localization,proliferation,and viability. Molecular imaging has given investigators a high-throughput,inexpensive,and sensitive means for tracking in vivo cell proliferation over days,weeks,and even months. This advancement has significantly increased the understanding of the spatio-temporal kinetics of hESC engraftment,proliferation,and teratoma-formation in living subjects. A major advance in molecular imaging has been the extension of noninvasive reporter gene assays from molecular and cellular biology into in vivo multi-modality imaging platforms. These reporter genes,under control of engineered promoters and enhancers that take advantage of the host cell s transcriptional machinery,are introduced into cells using a variety of vector and non-vector methods. Once in the cell,reporter genes can be transcribed either constitutively or only under specific biological or cellular conditions,depending on the type of promoter used. Transcription and translation of reporter genes into bioactive proteins is then detected with sensitive,noninvasive instrumentation (e.g.,CCD cameras) using signal-generating probes such as D-luciferin. To avoid the need for excitatory light to track stem cells in vivo as is required for fluorescence imaging,bioluminescence reporter gene imaging systems require only an exogenously administered probe to induce light emission. Firefly luciferase,derived from the firefly Photinus pyralis,encodes an enzyme that catalyzes D-luciferin to the optically active metabolite,oxyluciferin. Optical activity can then be monitored with an external CCD camera. Stably transduced cells that carry the reporter construct within their chromosomal DNA will pass the reporter construct DNA to daughter cells,allowing for longitudinal monitoring of hESC survival and proliferation in vivo. Furthermore,because expression of the reporter gene product is required for signal generation,only viable parent and daughter cells will create bioluminescence signal; apoptotic or dead cells will not. In this video,the specific materials and methods needed for tracking stem cell proliferation and teratoma formation with bioluminescence imaging will be described.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Domaica CI et al. (AUG 2009)
EMBO reports 10 8 908--15
Tumour-experienced T cells promote NK cell activity through trogocytosis of NKG2D and NKp46 ligands.
Natural killer (NK) cells trigger cytotoxicity and interferon (IFN)-gamma secretion on engagement of the natural-killer group (NKG)2D receptor or members of the natural cytotoxicity receptor (NCR) family,such as NKp46,by ligands expressed on tumour cells. However,it remains unknown whether T cells can regulate NK cell-mediated anti-tumour responses. Here,we investigated the early events occurring during T cell-tumour cell interactions,and their impact on NK cell functions. We observed that on co-culture with some melanomas,activated CD4(+) T cells promoted degranulation,and NKG2D- and NKp46-dependent IFN-gamma secretion by NK cells,probably owing to the capture of NKG2D and NKp46 ligands from the tumour-cell surface (trogocytosis). This effect was observed in CD4(+),CD8(+) and resting T cells,which showed substantial amounts of cell surface major histocompatibility complex class I chain-related protein A on co-culture with tumour cells. Our findings identify a new,so far,unrecognized mechanism by which effector T cells support NK cell function through the capture of specific tumour ligands with profound implications at the crossroad of innate and adaptive immunity.
View Publication
产品类型:
产品号#:
15025
15065
产品名:
RosetteSep™人NK细胞富集抗体混合物
RosetteSep™人NK细胞富集抗体混合物
文献
Clarke DM et al. (JAN 2009)
Cytotherapy 11 4 472--9
Improved post-thaw recovery of peripheral blood stem/progenitor cells using a novel intracellular-like cryopreservation solution.
BACKGROUND AIMS Peripheral blood stem cells (PBSC) have become the preferred stem cell source for autologous hematopoietic transplantation. A critical aspect of this treatment modality is cryopreservation of the stem cell products,which permits temporal separation of the PBSC mobilization/collection phase from the subsequent high-dose therapy. While controlled rate-freezing and liquid nitrogen storage have become 'routine' practice in many cell-processing facilities,there is clearly room for improvement as current cryopreservation media formulations still result in significant loss and damage to the stem/progenitor cell populations essential for engraftment,and can also expose the patients to relatively undefined serum components and larger volumes of dimethylsulfoxide (DMSO) that can contribute to the morbidity and mortality of the transplant therapy. METHODS This study compared cryopreservation of PBSC in a novel intracellular-like,fully defined,serum- and protein-free preservation solution,CryoStor (BioLife Solutions Inc.),with a standard formulation used by the Fred Hutchinson Cancer Research Center (FHCRC). Briefly,human PBSC apheresis specimens were collected and 5 x 10(7) cells/1 mL sample vial were prepared for cryopreservation in the following solutions: (a) FHCRC standard,Normosol-R,5% human serum albumin (HAS) and 10% DMSO; and (b) CryoStor CS10 (final diluted concentration of 5% DMSO). A standard controlled-rate freezing program was employed,and frozen vials were stored in the vapor phase of a liquid nitrogen freezer for a minimum of 1 week. Vials were then thawed and evaluated for total nucleated cell count (TNC),viability,CD34 and granulocytes by flow cytometry,along with colony-forming activity in methylcellulose. RESULTS The PBSC samples frozen in CryoStor CS10 yielded significantly improved post-thaw recoveries for total viable CD34(+),colony-forming units (CFU) and granulocytes. Specifically,relative to the FHCRC standard formulation,cryopreservation with CS10 resulted in an average 1.8-fold increased recovery of viable CD34(+) cells (P=0.005),a 1.5-fold increase in CFU-granulocyte-macrophage (GM) numbers (P=0.030) and a 2.3-fold increase in granulocyte recovery (P=0.045). CONCLUSIONS This study indicates that use of CryoStor for cryopreservation can yield significantly improved recovery and in vitro functionality of stem/progenitor cells in PBSC products. In addition,it is important to note that these improved recoveries were obtained while not introducing any extra serum or serum-derived proteins,and reducing the final concentration/volume of DMSO by half. Further in vitro and in vivo studies are clearly necessary; however,these findings imply use of CryoStor for cryopreservation could result in improved engraftment for those patients with a lower content of CD34(+) cells in their PBSC collections,along with reducing the requirement for additional apheresis collections and decreasing the risk of adverse infusion reactions associated with higher exposure to DMSO.
View Publication
产品类型:
产品号#:
07933
07953
07949
07930
07931
07940
07955
07959
产品名:
CryoStor®CS5
CryoStor®CS5
CryoStor®CS5
CryoStor® CS10
CryoStor® CS10
CryoStor® CS10
CryoStor® CS10
CryoStor® CS10
文献
Jumabay M et al. (NOV 2009)
Journal of molecular and cellular cardiology 47 5 565--75
Dedifferentiated fat cells convert to cardiomyocyte phenotype and repair infarcted cardiac tissue in rats.
Adipose tissue-derived stem cells have been demonstrated to differentiate into cardiomyocytes and vascular endothelial cells. Here we investigate whether mature adipocyte-derived dedifferentiated fat (DFAT) cells can differentiate to cardiomyocytes in vitro and in vivo by establishing DFAT cell lines via ceiling culture of mature adipocytes. DFAT cells were obtained by dedifferentiation of mature adipocytes from GFP-transgenic rats. We evaluated the differentiating ability of DFAT cells into cardiomyocytes by detection of the cardiac phenotype markers in immunocytochemical and RT-PCR analyses in vitro. We also examined effects of the transplantation of DFAT cells into the infarcted heart of rats on cardiomyocytes regeneration and angiogenesis. DFAT cells expressed cardiac phenotype markers when cocultured with cardiomyocytes and also when grown in MethoCult medium in the absence of cardiomyocytes,indicating that DFAT cells have the potential to differentiate to cardiomyocyte lineage. In a rat acute myocardial infarction model,transplanted DFAT cells were efficiently accumulated in infarcted myocardium and expressed cardiac sarcomeric actin at 8 weeks after the cell transplantation. The transplantation of DFAT cells significantly (ptextless0.05) increased capillary density in the infarcted area when compared with hearts from saline-injected control rats. We demonstrated that DFAT cells have the ability to differentiate to cardiomyocyte-like cells in vitro and in vivo. In addition,transplantation of DFAT cells led to neovascuralization in rats with myocardial infarction. We propose that DFAT cells represent a promising candidate cell source for cardiomyocyte regeneration in severe ischemic heart disease.
View Publication
产品类型:
产品号#:
03534
产品名:
MethoCult™GF M3534
文献
Peng C et al. (JAN 2010)
Blood 115 3 626--35
PTEN is a tumor suppressor in CML stem cells and BCR-ABL-induced leukemias in mice.
The tumor suppressor gene phosphatase and tensin homolog (PTEN) is inactivated in many human cancers. However,it is unknown whether PTEN functions as a tumor suppressor in human Philadelphia chromosome-positive leukemia that includes chronic myeloid leukemia (CML) and B-cell acute lymphoblastic leukemia (B-ALL) and is induced by the BCR-ABL oncogene. By using our mouse model of BCR-ABL-induced leukemias,we show that Pten is down-regulated by BCR-ABL in leukemia stem cells in CML and that PTEN deletion causes acceleration of CML development. In addition,overexpression of PTEN delays the development of CML and B-ALL and prolongs survival of leukemia mice. PTEN suppresses leukemia stem cells and induces cell-cycle arrest of leukemia cells. Moreover,PTEN suppresses B-ALL development through regulating its downstream gene Akt1. These results demonstrate a critical role of PTEN in BCR-ABL-induced leukemias and suggest a potential strategy for the treatment of Philadelphia chromosome-positive leukemia.
View Publication
产品类型:
产品号#:
09600
09650
产品名:
StemSpan™ SFEM
StemSpan™ SFEM
文献
Scielzo C et al. (NOV 2010)
Blood 116 18 3537--46
HS1 has a central role in the trafficking and homing of leukemic B cells.
The function of the intracellular protein hematopoietic cell-specific Lyn substrate-1 (HS1) in B lymphocytes is poorly defined. To investigate its role in migration,trafficking,and homing of leukemic B lymphocytes we have used B cells from HS1(-/-) mice,the HS1-silenced human chronic lymphocytic leukemia (CLL) MEC1 cell line and primary leukemic B cells from patients with CLL. We have used both in vitro and in vivo models and found that the lack of expression of HS1 causes several important functional effects. In vitro,we observed an impaired cytoskeletal remodeling that resulted in diminished cell migration,abnormal cell adhesion,and increased homotypic aggregation. In vivo,immunodeficient Rag2(-/-)γ(c)(-/-) mice injected with HS1-silenced CLL B cells showed a decreased organ infiltration with the notable exception of the bone marrow (BM). The leukemic-prone Eμ-TCL1 transgenic mice crossed with HS1-deficient mice were compared with Eμ-TCL1 mice and showed an earlier disease onset and a reduced survival. These findings show that HS1 is a central regulator of cytoskeleton remodeling that controls lymphocyte trafficking and homing and significantly influences the tissue invasion and infiltration in CLL.
View Publication
产品类型:
产品号#:
产品名:
文献
Wang H et al. (MAR 2011)
ACS chemical biology 6 2 192--7
Cardiac induction of embryonic stem cells by a small molecule inhibitor of Wnt/β-catenin signaling.
In vitro differentiation of embryonic stem cells is tightly regulated by the same key signaling pathways that control pattern formation during embryogenesis. Small molecules that selectively target these developmental pathways,including Wnt,and BMP signaling may be valuable for directing differentiation of pluripotent stem cells toward many desired tissue types,but to date only few such compounds have been shown to promote cardiac differentiation. Here,we show that XAV939,a recently discovered small molecule inhibitor of Wnt/β-catenin signaling,can robustly induce cardiomyogenesis in mouse ES cells. Our results suggest that a timely administration of XAV939 immediately following the formation of mesoderm progenitor cells promotes cardiomyogenic development at the expense of other mesoderm derived lineages,including the endothelial,smooth muscle,and hematopoietic lineages. Given the critical role that Wnt/β-catenin signaling plays in many aspects of embryogenesis and tissue regeneration,XAV939 is a valuable chemical probe to dissect in vitro differentiation of stem cells and to explore their regenerative potential in a variety of contexts.
View Publication
产品类型:
产品号#:
72672
72674
产品名:
XAV939
XAV939
文献
Cheung C et al. (APR 2014)
Nature protocols 9 4 929--38
Directed differentiation of embryonic origin-specific vascular smooth muscle subtypes from human pluripotent stem cells.
Vascular smooth muscle cells (SMCs) arise from diverse developmental origins. Regional distribution of vascular diseases may,in part,be attributed to this inherent heterogeneity in SMC lineage. Therefore,systems for generating human SMC subtypes of distinct embryonic origins would represent useful platforms for studying the influence of SMC lineage on the spatial specificity of vascular disease. Here we describe how human pluripotent stem cells can be differentiated into distinct populations of SMC subtypes under chemically defined conditions. The initial stage (days 0-5 or 0-7) begins with the induction of three intermediate lineages: neuroectoderm,lateral plate mesoderm and paraxial mesoderm. Subsequently,these precursor lineages are differentiated into contractile SMCs (days 5-19+). At key stages,the emergence of lineage-specific markers confirms recapitulation of embryonic developmental pathways and generation of functionally distinct SMC subtypes. The ability to derive an unlimited supply of human SMCs will accelerate applications in regenerative medicine and disease modeling.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Kim JJ et al. (DEC 2014)
Genomics data 2 10 139--143
Molecular effect of ethanol during neural differentiation of human embryonic stem cells in vitro.
Potential teratogenic effects of alcohol on fetal development have been documented. Especially studies have demonstrated deleterious effect of ethanol exposure on neuronal development in animal models and on the maintenance and differentiation of neuronal precursor cells derived from stem cells. To better understand the molecular effect of alcohol on the process of neural differentiation,we have performed gene expression microarray analysis on human embryonic stem cells being directed to neural rosettes and neural precursor cells in the presence of ethanol treatment. Here we provide detailed experimental methods,analysis and information associated with our data deposited into Gene Expression Omnibus (GEO) under GSE56906. Our data provide scientific insight on potential molecular effects of fetal alcohol exposure on neural differentiation of early embryo development.
View Publication
产品类型:
产品号#:
05832
07920
85850
85857
05835
05839
08581
08582
产品名:
STEMdiff™ 神经花环选择试剂
ACCUTASE™
mTeSR™1
mTeSR™1
STEMdiff™ 神经诱导培养基
STEMdiff™ 神经诱导培养基
STEMdiff™SMADi神经诱导试剂盒
STEMdiff™SMADi神经诱导试剂盒,2套
文献
Son MY et al. (MAY 2016)
Exp Mol Med 48 5 e232
Generation and characterization of integration-free induced pluripotent stem cells from patients with autoimmune disease
Autoimmune diseases (AIDs),a heterogeneous group of immune-mediated disorders,are a major and growing health problem. Although AIDs are currently treated primarily with anti-inflammatory and immunosuppressive drugs,the use of stem cell transplantation in patients with AIDs is becoming increasingly common. However,stem cell transplantation therapy has limitations,including a shortage of available stem cells and immune rejection of cells from nonautologous sources. Induced pluripotent stem cell (iPSC) technology,which allows the generation of patient-specific pluripotent stem cells,could offer an alternative source for clinical applications of stem cell therapies in AID patients. We used nonintegrating oriP/EBNA-1-based episomal vectors to reprogram dermal fibroblasts from patients with AIDs such as ankylosing spondylitis (AS),Sjogren's syndrome (SS) and systemic lupus erythematosus (SLE). The pluripotency and multilineage differentiation capacity of each patient-specific iPSC line was validated. The safety of these iPSCs for use in stem cell transplantation is indicated by the fact that all AID-specific iPSCs are integrated transgene free. Finally,all AID-specific iPSCs derived in this study could be differentiated into cells of hematopoietic and mesenchymal lineages in vitro as shown by flow cytometric analysis and induction of terminal differentiation potential. Our results demonstrate the successful generation of integration-free iPSCs from patients with AS,SS and SLE. These findings support the possibility of using iPSC technology in autologous and allogeneic cell replacement therapy for various AIDs,including AS,SS and SLE.
View Publication
产品类型:
产品号#:
04034
04044
85850
85857
产品名:
MethoCult™H4034 Optimum
MethoCult™H4034 Optimum
mTeSR™1
mTeSR™1
文献
Korniotis S et al. ( 2016)
Nature communications 7 12134
Treatment of ongoing autoimmune encephalomyelitis with activated B-cell progenitors maturing into regulatory B cells.
The influence of signals perceived by immature B cells during their development in bone marrow on their subsequent functions as mature cells are poorly defined. Here,we show that bone marrow cells transiently stimulated in vivo or in vitro through the Toll-like receptor 9 generate proB cells (CpG-proBs) that interrupt experimental autoimmune encephalomyelitis (EAE) when transferred at the onset of clinical symptoms. Protection requires differentiation of CpG-proBs into mature B cells that home to reactive lymph nodes,where they trap T cells by releasing the CCR7 ligand,CCL19,and to inflamed central nervous system,where they locally limit immunopathogenesis through interleukin-10 production,thereby cooperatively inhibiting ongoing EAE. These data demonstrate that a transient inflammation at the environment,where proB cells develop,is sufficient to confer regulatory functions onto their mature B-cell progeny. In addition,these properties of CpG-proBs open interesting perspectives for cell therapy of autoimmune diseases.
View Publication