Bhat-Nakshatri P et al. ( 2013)
Scientific reports 3 2530
Identification of FDA-approved drugs targeting breast cancer stem cells along with biomarkers of sensitivity.
Recently developed genomics-based tools are allowing repositioning of Food and Drug Administration (FDA)-approved drugs as cancer treatments,which were employed to identify drugs that target cancer stem cells (CSCs) of breast cancer. Gene expression datasets of CSCs from six studies were subjected to connectivity map to identify drugs that may ameliorate gene expression patterns unique to CSCs. All-trans retinoic acid (ATRA) was negatively connected with gene expression in CSCs. ATRA reduced mammosphere-forming ability of a subset of breast cancer cells,which correlated with induction of apoptosis,reduced expression of SOX2 but elevated expression of its antagonist CDX2. SOX2/CDX2 ratio had prognostic relevance in CSC-enriched breast cancers. K-ras mutant breast cancer cell line enriched for CSCs was resistant to ATRA,which was reversed by MAP kinase inhibitors. Thus,ATRA alone or in combination can be tested for efficacy using SOX2,CDX2,and K-ras mutation/MAPK activation status as biomarkers of response.
View Publication
产品类型:
产品号#:
05620
产品名:
MammoCult™ 人源培养基套装
文献
Wang J et al. (JAN 2014)
Journal of Biological Chemistry 289 4 2384--2395
Epigenetic regulation of miR-302 by JMJD1C inhibits neural differentiation of human embryonic stem cells.
It has been recently reported that the regulatory circuitry formed by OCT4,miR-302,and NR2F2 controls both pluripotency and neural differentiation of human embryonic stem cells (hESCs). We show here that JMJD1C,a histone 3 lysine 9 (H3K9) demethylase expressed in hESCs,directly interacts with this circuitry. hESCs with stable knockdown of JMJD1C remain pluripotent while having reduced miR-302 expression,decreased BMP signaling,and enhanced TGF$\$ JMJD1C binds to the miR-302 promoter and reduces H3K9 methylation. Withdrawal of basic fibroblast growth factor (bFGF) from the culture induces neural differentiation of the knockdown,but not the control,cells within 3 days,accompanied by elevated NR2F2 expression. This can be attenuated with miR-302 mimics or an H3K9 methytransferase inhibitor. Together,our findings suggest that JMJD1C represses neural differentiation of hESCs at least partially by epigenetically sustaining miR-302 expression and that JMJD1C knockdown is sufficient to trigger neural differentiation upon withdrawal of exogenous bFGF.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Khalid O et al. (MAY 2014)
Stem Cell Research 12 3 791--806
Gene expression signatures affected by alcohol-induced DNA methylomic deregulation in human embryonic stem cells
Stem cells,especially human embryonic stem cells (hESCs),are useful models to study molecular mechanisms of human disorders that originate during gestation. Alcohol (ethanol,EtOH) consumption during pregnancy causes a variety of prenatal and postnatal disorders collectively referred to as fetal alcohol spectrum disorders (FASDs). To better understand the molecular events leading to FASDs,we performed a genome-wide analysis of EtOH's effects on the maintenance and differentiation of hESCs in culture. Gene Co-expression Network Analysis showed significant alterations in gene profiles of EtOH-treated differentiated or undifferentiated hESCs,particularly those associated with molecular pathways for metabolic processes,oxidative stress,and neuronal properties of stem cells. A genome-wide DNA methylome analysis revealed widespread EtOH-induced alterations with significant hypermethylation of many regions of chromosomes. Undifferentiated hESCs were more vulnerable to EtOH's effect than their differentiated counterparts,with methylation on the promoter regions of chromosomes 2,16 and 18 in undifferentiated hESCs most affected by EtOH exposure. Combined transcriptomic and DNA methylomic analysis produced a list of differentiation-related genes dysregulated by EtOH-induced DNA methylation changes,which likely play a role in EtOH-induced decreases in hESC pluripotency. DNA sequence motif analysis of genes epigenetically altered by EtOH identified major motifs representing potential binding sites for transcription factors. These findings should help in deciphering the precise mechanisms of alcohol-induced teratogenesis. ?? 2014 Published by Elsevier B.V.
View Publication
产品类型:
产品号#:
07920
85850
85857
产品名:
ACCUTASE™
mTeSR™1
mTeSR™1
文献
Gilpin SE et al. (NOV 2014)
The Annals of thoracic surgery 98 5 1721--------9; discussion 1729
Enhanced lung epithelial specification of human induced pluripotent stem cells on decellularized lung matrix.
BACKGROUND Whole-lung scaffolds can be created by perfusion decellularization of cadaveric donor lungs. The resulting matrices can then be recellularized to regenerate functional organs. This study evaluated the capacity of acellular lung scaffolds to support recellularization with lung progenitors derived from human induced pluripotent stem cells (iPSCs). METHODS Whole rat and human lungs were decellularized by constant-pressure perfusion with 0.1% sodium dodecyl sulfate solution. Resulting lung scaffolds were cryosectioned into slices or left intact. Human iPSCs were differentiated to definitive endoderm,anteriorized to a foregut fate,and then ventralized to a population expressing NK2 homeobox 1 (Nkx2.1). Cells were seeded onto slices and whole lungs,which were maintained under constant perfusion biomimetic culture. Lineage specification was assessed by quantitative polymerase chain reaction and immunofluorescent staining. Regenerated left lungs were transplanted in an orthotopic position. RESULTS Activin-A treatment,followed by transforming growth factor-$\$,induced differentiation of human iPSCs to anterior foregut endoderm as confirmed by forkhead box protein A2 (FOXA2),SRY (Sex Determining Region Y)-Box 17 (SOX17),and SOX2 expression. Cells cultured on decellularized lung slices demonstrated proliferation and lineage commitment after 5 days. Cells expressing Nkx2.1 were identified at 40% to 60% efficiency. Within whole-lung scaffolds and under perfusion culture,cells further upregulated Nkx2.1 expression. After orthotopic transplantation,grafts were perfused and ventilated by host vasculature and airways. CONCLUSIONS Decellularized lung matrix supports the culture and lineage commitment of human iPSC-derived lung progenitor cells. Whole-organ scaffolds and biomimetic culture enable coseeding of iPSC-derived endothelial and epithelial progenitors and enhance early lung fate. Orthotopic transplantation may enable further in vivo graft maturation.
View Publication
产品类型:
产品号#:
07920
09500
85850
85857
产品名:
ACCUTASE™
BIT 9500血清替代物
mTeSR™1
mTeSR™1
文献
Ong Q et al. ( 2015)
ACS chemical neuroscience 6 1 130--137
U0126 protects cells against oxidative stress independent of its function as a MEK inhibitor.
U0126 is a potent and selective inhibitor of MEK1 and MEK2 kinases. It has been widely used as an inhibitor for the Ras/Raf/MEK/ERK signaling pathway with over 5000 references on the NCBI PubMed database. In particular,U0126 has been used in a number of studies to show that inhibition of the Raf/MEK/ERK pathway protects neuronal cells against oxidative stress. Here,we report that U0126 can function as an antioxidant that protects PC12 cells against a number of different oxidative-stress inducers. This protective effect of U0126 is independent of its function as a MEK inhibitor,as several other MEK inhibitors failed to show similar protective effects. U0126 reduces reactive oxygen species (ROS) in cells. We further demonstrate that U0126 is a direct ROS scavenger in vitro,and the oxidation products of U0126 exhibit fluorescence. Our finding that U0126 is a strong antioxidant signals caution for its future usage as a MEK inhibitor and for interpreting some previous results.
View Publication
产品类型:
产品号#:
73522
产品名:
U- 0126
文献
Hou TZ et al. ( 2015)
The Journal of Immunology 194 5 2148--2159
A Transendocytosis Model of CTLA-4 Function Predicts Its Suppressive Behavior on Regulatory T Cells
Manipulation of the CD28/CTLA-4 pathway is at the heart of a number of immunomodulatory approaches used in both autoimmunity and cancer. Although it is clear that CTLA-4 is a critical regulator of T cell responses,the immunological contexts in which CTLA-4 controls immune responses are not well defined. In this study,we show that whereas CD80/CD86-dependent activation of resting human T cells caused extensive T cell proliferation and robust CTLA-4 expression,in this context CTLA-4 blocking Abs had no impact on the response. In contrast,in settings where CTLA-4(+) cells were present as regulators�
View Publication
产品类型:
产品号#:
17951
17951RF
19232
19232RF
19052
19052RF
19059
19059RF
产品名:
EasySep™人T细胞分选试剂盒
RoboSep™ 人T细胞分选试剂盒
EasySep™人CD4+ CD127low CD49d-调节性T细胞富集试剂盒
RoboSep™ CD4+ CD127low CD49d-调节性T细胞富集试剂盒
EasySep™人CD4+ T细胞富集试剂盒
RoboSep™ 人CD4+ T细胞富集试剂盒含滤芯吸头
EasySep™人单核细胞富集试剂盒
RoboSep™ 人单核细胞富集试剂盒含滤芯吸头
文献
Tafaleng EN et al. (JUL 2015)
Hepatology 62 1 147--157
Induced pluripotent stem cells model personalized variations in liver disease resulting from $\$1-antitrypsin deficiency.
UNLABELLED In the classical form of $\$1-antitrypsin deficiency (ATD),aberrant intracellular accumulation of misfolded mutant $\$1-antitrypsin Z (ATZ) in hepatocytes causes hepatic damage by a gain-of-function,proteotoxic" mechanism. Whereas some ATD patients develop severe liver disease (SLD) that necessitates liver transplantation�
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Maricato JT et al. ( 2015)
PloS One 10 4 e0119234
Epigenetic Modulations in Activated Cells Early after HIV-1 Infection and Their Possible Functional Consequences
Epigenetic modifications refer to a number of biological processes which alter the structure of chromatin and its transcriptional activity such as DNA methylation and histone post-translational processing. Studies have tried to elucidate how the viral genome and its products are affected by epigenetic modifications imposed by cell machinery and how it affects the ability of the virus to either,replicate and produce a viable progeny or be driven to latency. The purpose of this study was to evaluate epigenetic modifications in PBMCs and CD4+ cells after HIV-1 infection analyzing three approaches: (i) global DNA- methylation; (ii) qPCR array and (iii) western blot. HIV-1 infection led to methylation increases in the cellular DNA regardless the activation status of PBMCs. The analysis of H3K9me3 and H3K27me3 suggested a trend towards transcriptional repression in activated cells after HIV-1 infection. Using a qPCR array,we detected genes related to epigenetic processes highly modulated in activated HIV-1 infected cells. SETDB2 and RSK2 transcripts showed highest up-regulation levels. SETDB2 signaling is related to transcriptional silencing while RSK2 is related to either silencing or activation of gene expression depending on the signaling pathway triggered down-stream. In addition,activated cells infected by HIV-1 showed lower CD69 expression and a decrease of IL-2,IFN-γ and metabolism-related factors transcripts indicating a possible functional consequence towards global transcriptional repression found in HIV-1 infected cells. Conversely,based on epigenetic markers studied here,non-stimulated cells infected by HIV-1,showed signs of global transcriptional activation. Our results suggest that HIV-1 infection exerts epigenetic modulations in activated cells that may lead these cells to transcriptional repression with important functional consequences. Moreover,non-stimulated cells seem to increase gene transcription after HIV-1 infection. Based on these observations,it is possible to speculate that the outcome of viral infections may be influenced by the cellular activation status at the moment of infection.
View Publication
产品类型:
产品号#:
21000
20119
20155
产品名:
RoboSep™- S
RoboSep™ 吸头组件抛光剂
RoboSep™分选试管套装(9个塑料管+吸头保护器)
文献
Kim H-M et al. (FEB 2016)
Scientific reports 6 21684
Xeno-sensing activity of the aryl hydrocarbon receptor in human pluripotent stem cell-derived hepatocyte-like cells.
Although hepatocyte-like cells derived from human pluripotent stem cells (hPSC-HLCs) are considered a promising model for predicting hepatotoxicity,their application has been restricted because of the low activity of drug metabolizing enzymes (DMEs). Here we found that the low expression of xenobiotic receptors (constitutive androstane receptor,CAR; and pregnane X receptor,PXR) contributes to the low activity of DMEs in hPSC-HLCs. Most CAR- and PXR-regulated DMEs and transporters were transcriptionally down-regulated in hPSC-HLC. Transcriptional expression of CAR and PXR was highly repressed in hPSC-HLCs,whereas mRNA levels of aryl hydrocarbon receptor (AHR) were comparable to those of adult liver. Furthermore,ligand-induced transcriptional activation was observed only at AHR in hPSC-HLCs. Bisulfite sequencing analysis demonstrated that promoter hypermethylation of CAR and PXR was associated with diminished transcriptional activity in hPSC-HLCs. Treatment with AHR-selective ligands increased the transcription of AHR-dependent target genes by direct AHR-DNA binding at the xenobiotic response element. In addition,an antagonist of AHR significantly inhibited AHR-dependent target gene expression. Thus,AHR may function intrinsically as a xenosensor as well as a ligand-dependent transcription factor in hPSC-HLCs. Our results indicate that hPSC-HLCs can be used to screen toxic substances related to AHR signaling and to identify potential AHR-targeted therapeutics.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
文献
Saxena P et al. ( 2016)
Nature communications 7 11247
A programmable synthetic lineage-control network that differentiates human IPSCs into glucose-sensitive insulin-secreting beta-like cells.
Synthetic biology has advanced the design of standardized transcription control devices that programme cellular behaviour. By coupling synthetic signalling cascade- and transcription factor-based gene switches with reverse and differential sensitivity to the licensed food additive vanillic acid,we designed a synthetic lineage-control network combining vanillic acid-triggered mutually exclusive expression switches for the transcription factors Ngn3 (neurogenin 3; OFF-ON-OFF) and Pdx1 (pancreatic and duodenal homeobox 1; ON-OFF-ON) with the concomitant induction of MafA (V-maf musculoaponeurotic fibrosarcoma oncogene homologue A; OFF-ON). This designer network consisting of different network topologies orchestrating the timely control of transgenic and genomic Ngn3,Pdx1 and MafA variants is able to programme human induced pluripotent stem cells (hIPSCs)-derived pancreatic progenitor cells into glucose-sensitive insulin-secreting beta-like cells,whose glucose-stimulated insulin-release dynamics are comparable to human pancreatic islets. Synthetic lineage-control networks may provide the missing link to genetically programme somatic cells into autologous cell phenotypes for regenerative medicine.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Yamane J et al. (MAY 2016)
Nucleic Acids Research 44 12 5515--5528
Prediction of developmental chemical toxicity based on gene networks of human embryonic stem cells
Predictive toxicology using stem cells or their derived tissues has gained increasing importance in biomedical and pharmaceutical research. Here,we show that toxicity category prediction by support vector machines (SVMs),which uses qRT-PCR data from 20 categorized chemicals based on a human embryonic stem cell (hESC) system,is improved by the adoption of gene networks,in which network edge weights are added as feature vectors when noisy qRT-PCR data fail to make accurate predictions. The accuracies of our system were 97.5-100% for three toxicity categories: neurotoxins (NTs),genotoxic carcinogens (GCs) and non-genotoxic carcinogens (NGCs). For two uncategorized chemicals,bisphenol-A and permethrin,our system yielded reasonable results: bisphenol-A was categorized as an NGC,and permethrin was categorized as an NT; both predictions were supported by recently published papers. Our study has two important features: (i) as the first study to employ gene networks without using conventional quantitative structure-activity relationships (QSARs) as input data for SVMs to analyze toxicogenomics data in an hESC validation system,it uses additional information of gene-to-gene interactions to significantly increase prediction accuracies for noisy gene expression data; and (ii) using only undifferentiated hESCs,our study has considerable potential to predict late-onset chemical toxicities,including abnormalities that occur during embryonic development.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Hu S et al. (JUN 2016)
JCI Insight 1 8 1--12
Effects of cellular origin on differentiation of human induced pluripotent stem cell–derived endothelial cells
Human induced pluripotent stem cells (iPSCs) can be derived from various types of somatic cells by transient overexpression of 4 Yamanaka factors (OCT4,SOX2,C-MYC,and KLF4). Patient-specific iPSC derivatives (e.g.,neuronal,cardiac,hepatic,muscular,and endothelial cells [ECs]) hold great promise in drug discovery and regenerative medicine. In this study,we aimed to evaluate whether the cellular origin can affect the differentiation,in vivo behavior,and single-cell gene expression signatures of human iPSC-derived ECs. We derived human iPSCs from 3 types of somatic cells of the same individuals: fibroblasts (FB-iPSCs),ECs (EC-iPSCs),and cardiac progenitor cells (CPC-iPSCs). We then differentiated them into ECs by sequential administration of Activin,BMP4,bFGF,and VEGF. EC-iPSCs at early passage (10 textless P textless 20) showed higher EC differentiation propensity and gene expression of EC-specific markers (PECAM1 and NOS3) than FB-iPSCs and CPC-iPSCs. In vivo transplanted EC-iPSC-ECs were recovered with a higher percentage of CD31(+) population and expressed higher EC-specific gene expression markers (PECAM1,KDR,and ICAM) as revealed by microfluidic single-cell quantitative PCR (qPCR). In vitro EC-iPSC-ECs maintained a higher CD31(+) population than FB-iPSC-ECs and CPC-iPSC-ECs with long-term culturing and passaging. These results indicate that cellular origin may influence lineage differentiation propensity of human iPSCs; hence,the somatic memory carried by early passage iPSCs should be carefully considered before clinical translation.
View Publication