Gattinoni L et al. ( 2009)
Nature medicine 15 7 808--813
Wnt signaling arrests effector T cell differentiation and generates CD8+ memory stem cells.
Self-renewing cell populations such as hematopoietic stem cells and memory B and T lymphocytes might be regulated by shared signaling pathways. The Wnt-beta-catenin pathway is an evolutionarily conserved pathway that promotes hematopoietic stem cell self-renewal and multipotency by limiting stem cell proliferation and differentiation,but its role in the generation and maintenance of memory T cells is unknown. We found that induction of Wnt-beta-catenin signaling by inhibitors of glycogen sythase kinase-3beta or the Wnt protein family member Wnt3a arrested CD8(+) T cell development into effector cells. By blocking T cell differentiation,Wnt signaling promoted the generation of CD44(low)CD62L(high)Sca-1(high)CD122(high)Bcl-2(high) self-renewing multipotent CD8(+) memory stem cells with proliferative and antitumor capacities exceeding those of central and effector memory T cell subsets. These findings reveal a key role for Wnt signaling in the maintenance of 'stemness' in mature memory CD8(+) T cells and have major implications for the design of new vaccination strategies and adoptive immunotherapies.
View Publication
产品类型:
产品号#:
73512
73514
产品名:
TWS119
TWS119
文献
Carter CC et al. (APR 2010)
Nature medicine 16 4 446--51
HIV-1 infects multipotent progenitor cells causing cell death and establishing latent cellular reservoirs.
HIV causes a chronic infection characterized by depletion of CD4(+) T lymphocytes and the development of opportunistic infections. Despite drugs that inhibit viral spread,HIV infection has been difficult to cure because of uncharacterized reservoirs of infected cells that are resistant to highly active antiretroviral therapy (HAART) and the immune response. Here we used CD34(+) cells from infected people as well as in vitro studies of wild-type HIV to show infection and killing of CD34(+) multipotent hematopoietic progenitor cells (HPCs). In some HPCs,we detected latent infection that stably persisted in cell culture until viral gene expression was activated by differentiation factors. A unique reporter HIV that directly detects latently infected cells in vitro confirmed the presence of distinct populations of active and latently infected HPCs. These findings have major implications for understanding HIV bone marrow pathology and the mechanisms by which HIV causes persistent infection.
View Publication
产品类型:
产品号#:
产品名:
文献
Walter JE et al. (JUL 2010)
The Journal of experimental medicine 207 7 1541--54
Expansion of immunoglobulin-secreting cells and defects in B cell tolerance in Rag-dependent immunodeficiency.
The contribution of B cells to the pathology of Omenn syndrome and leaky severe combined immunodeficiency (SCID) has not been previously investigated. We have studied a mut/mut mouse model of leaky SCID with a homozygous Rag1 S723C mutation that impairs,but does not abrogate,V(D)J recombination activity. In spite of a severe block at the pro-B cell stage and profound B cell lymphopenia,significant serum levels of immunoglobulin (Ig) G,IgM,IgA,and IgE and a high proportion of Ig-secreting cells were detected in mut/mut mice. Antibody responses to trinitrophenyl (TNP)-Ficoll and production of high-affinity antibodies to TNP-keyhole limpet hemocyanin were severely impaired,even after adoptive transfer of wild-type CD4(+) T cells. Mut/mut mice produced high amounts of low-affinity self-reactive antibodies and showed significant lymphocytic infiltrates in peripheral tissues. Autoantibody production was associated with impaired receptor editing and increased serum B cell-activating factor (BAFF) concentrations. Autoantibodies and elevated BAFF levels were also identified in patients with Omenn syndrome and leaky SCID as a result of hypomorphic RAG mutations. These data indicate that the stochastic generation of an autoreactive B cell repertoire,which is associated with defects in central and peripheral checkpoints of B cell tolerance,is an important,previously unrecognized,aspect of immunodeficiencies associated with hypomorphic RAG mutations.
View Publication
产品类型:
产品号#:
产品名:
文献
Dambrot C et al. (FEB 2011)
The Biochemical journal 434 1 25--35
Cardiomyocyte differentiation of pluripotent stem cells and their use as cardiac disease models.
More than 10 years after their first isolation,human embryonic stem cells are finally 'coming of age' in research and biotechnology applications as protocols for their differentiation and undifferentiated expansion in culture become robust and scalable,and validated commercial reagents become available. Production of human cardiomyocytes is now feasible on a daily basis for many laboratories with tissue culture expertise. An additional recent surge of interest resulting from the first production of human iPSCs (induced pluripotent stem cells) from somatic cells of patients now makes these technologies of even greater importance since it is likely that (genetic) cardiac disease phenotypes can be captured in the cardiac derivatives of these cells. Although cell therapy based on replacing cardiomyocytes lost or dysfunctional owing to cardiac disease are probably as far away as ever,biotechnology and pharmaceutical applications in safety pharmacology and drug discovery will probably impact this clinical area in the very near future. In the present paper,we review the cutting edge of this exciting area of translational research.
View Publication
Stingl J et al. (MAY 2001)
Breast cancer research and treatment 67 2 93--109
Characterization of bipotent mammary epithelial progenitor cells in normal adult human breast tissue.
The purpose of the present study was to characterize primitive epithelial progenitor populations present in adult normal human mammary tissue using a combination of flow cytometry and in vitro colony assay procedures. Three types of human breast epithelial cell (HBEC) progenitors were identified: luminal-restricted,myoepithelial-restricted and bipotent progenitors. The first type expressed epithelial cell adhesion molecule (EpCAM),alpha6 integrin and MUC1 and generated colonies composed exclusively of cells positive for the luminal-associated markers keratin 8/18,keratin 19,EpCAM and MUC1. Bipotent progenitors produced colonies containing a central core of cells expressing luminal markers surrounded by keratin 14+ myoepithelial-like cells. Single cell cultures confirmed the bipotentiality of these progenitors. Their high expression of alpha6 integrin and low expression of MUC1 suggests a basal position of these cells in the mammary epithelium in vivo. Serial passage in vitro of an enriched population of bipotent progenitors demonstrated that only myoepithelial-restricted progenitors could be readily generated under the culture conditions used. These results support a hierarchical branching model of HBEC progenitor differentiation from a primitive uncommitted cell to luminal- and myoepithelial-restricted progenitors.
View Publication
产品类型:
产品号#:
01700
01705
05601
05610
产品名:
ALDEFLUOR™ 试剂盒
ALDEFLUOR™DEAB试剂
EpiCult™-B 人培养基
EpiCult™-B 小鼠培养基
文献
Son M-Y et al. (JAN 2017)
Stem cells and development 26 2 133--145
Biomarker Discovery by Modeling Behçet's Disease with Patient-Specific Human Induced Pluripotent Stem Cells.
Behçet's disease (BD) is a chronic inflammatory and multisystemic autoimmune disease of unknown etiology. Due to the lack of a specific test for BD,its diagnosis is very difficult and therapeutic options are limited. Induced pluripotent stem cell (iPSC) technology,which provides inaccessible disease-relevant cell types,opens a new era for disease treatment. In this study,we generated BD iPSCs from patient somatic cells and differentiated them into hematopoietic precursor cells (BD iPSC-HPCs) as BD model cells. Based on comparative transcriptome analysis using our BD model cells,we identified eight novel BD-specific genes,AGTR2,CA9,CD44,CXCL1,HTN3,IL-2,PTGER4,and TSLP,which were differentially expressed in BD patients compared with healthy controls or patients with other immune diseases. The use of CXCL1 as a BD biomarker was further validated at the protein level using both a BD iPSC-HPC-based assay system and BD patient serum samples. Furthermore,we show that our BD iPSC-HPC-based drug screening system is highly effective for testing CXCL1 BD biomarkers,as determined by monitoring the efficacy of existing anti-inflammatory drugs. Our results shed new light on the usefulness of patient-specific iPSC technology in the development of a benchmarking platform for disease-specific biomarkers,phenotype- or target-driven drug discovery,and patient-tailored therapies.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
O'Brien CM et al. (DEC 2016)
Stem cells (Dayton,Ohio)
New Monoclonal Antibodies to Defined Cell Surface Proteins on Human Pluripotent Stem Cells.
The study and application of human pluripotent stem cells (hPSCs) will be enhanced by the availability of well-characterised monoclonal antibodies (mAbs) detecting cell-surface epitopes. Here we report generation of seven new mAbs that detect cell surface proteins present on live and fixed human ES cells (hESCs) and human iPS cells (hiPSCs),confirming our previous prediction that these proteins were present on the cell surface of hPSCs. The mAbs all show a high correlation with POU5F1 (OCT4) expression and other hPSC surface markers (TRA-160 and SSEA-4) in hPSC cultures and detect rare OCT4 positive cells in differentiated cell cultures. These mAbs are immunoreactive to cell surface protein epitopes on both primed and naive state hPSCs,providing useful research tools to investigate the cellular mechanisms underlying human pluripotency and states of cellular reprogramming. In addition,we report that subsets of the seven new mAbs are also immunoreactive to human bone marrow-derived mesenchymal stem cells (MSCs),normal human breast subsets and both normal and tumorigenic colorectal cell populations. The mAbs reported here should accelerate the investigation of the nature of pluripotency,and enable development of robust cell separation and tracing technologies to enrich or deplete for hPSCs and other human stem and somatic cell types. This article is protected by copyright. All rights reserved.
View Publication
产品类型:
产品号#:
产品名:
文献
P. A. Morawski et al. (JAN 2017)
Scientific reports 7 40838
Non-pathogenic tissue-resident CD8+ T cells uniquely accumulate in the brains of lupus-prone mice.
Severe lupus often includes psychiatric and neurological sequelae,although the cellular contributors to CNS disease remain poorly defined. Using intravascular staining to discriminate tissue-localized from blood-borne cells,we find substantial accumulation of CD8+ T cells relative to other lymphocytes in brain tissue,which correlates with lupus disease and limited neuropathology. This is in contrast to all other affected organs,where infiltrating CD4+ cells are predominant. Brain-infiltrating CD8+ T cells represent an activated subset of those found in the periphery,having a resident-memory phenotype (CD69+CD122-PD1+CD44+CD62L-) and expressing adhesion molecules (VLA-4+LFA-1+) complementary to activated brain endothelium. Remarkably,infiltrating CD8+ T cells do not cause tissue damage in lupus-prone mice,as genetic ablation of these cells via $\beta$2 m deficiency does not reverse neuropathology,but exacerbates disease both in the brain and globally despite decreased serum IgG levels. Thus,lupus-associated inflammation disrupts the blood-brain barrier in a discriminating way biased in favor of non-pathogenic CD8+ T cells relative to other infiltrating leukocytes,perhaps preventing further tissue damage in such a sensitive organ.
View Publication