Ricci A et al. (JUN 2013)
Cell cycle (Georgetown,Tex.) 12 11 1696--1703
TrkB is responsible for EMT transition in malignant pleural effusions derived cultures from adenocarcinoma of the lung.
Lung cancer is the leading cause of cancer-related mortality worldwide. Recent evidence indicates that tumors contain a subpopulation of cancer stem cells (CSCs) that are responsible for tumor maintenance and spread. CSCs have recently been linked to the occurrence of epithelial-to-mesenchymal transition (EMT). Neurotrophins (NTs) are growth factors that regulate the biology of embryonic stem cells and cancer cells,but still little is known about the role NTs in the progression of lung cancer. In this work,we investigated the role of the NTs and their receptors using as a study system primary cell cultures derived from malignant pleural effusions (MPEs) of patients with adenocarcinoma of the lung. We assessed the expression of NTs and their receptors in MPE-derived adherent cultures vs. spheroids enriched in CSC markers. We observed in spheroids a selectively enhanced expression of TrkB,both at the mRNA and protein levels. Both K252a,a known inhibitor of Trk activity,and a siRNA against TrkB strongly affected spheroid morphology,induced anoikis and decreased spheroid forming efficiency. Treatment with neurotrophins reversed the inhibitory effect of K252a. Importantly,TrkB inhibition caused loss of vimentin expression as well as that of a set of transcription factors known to be linked to EMT. These ex vivo results nicely correlated with an inverse relationship between TrkB and E-cadherin expression measured by immunohistochemistry in a panel of lung adenocarcinoma samples. We conclude that TrkB is involved in full acquisition of EMT in lung cancer,and that its inhibition results in a less aggressive phenotype.
View Publication
产品类型:
产品号#:
01700
01705
产品名:
ALDEFLUOR™ 试剂盒
ALDEFLUOR™DEAB试剂
文献
Schwartz C et al. (JUN 2015)
Blood 125 25 3896--904
Eosinophil-specific deletion of IκBα in mice reveals a critical role of NF-κB-induced Bcl-xL for inhibition of apoptosis.
Eosinophils are associated with type 2 immune responses to allergens and helminths. They release various proinflammatory mediators and toxic proteins on activation and are therefore considered proinflammatory effector cells. Eosinophilia is promoted by the cytokines interleukin (IL)-3,IL-5,and granulocyte macrophage-colony-stimulating factor (GM-CSF) and can result from enhanced de novo production or reduced apoptosis. In this study,we show that only IL-5 induces differentiation of eosinophils from bone marrow precursors,whereas IL-5,GM-CSF,and to a lesser extent IL-3 promote survival of mature eosinophils. The receptors for these cytokines use the common β chain,which serves as the main signaling unit linked to signal transducer and activator of transcription 5,p38 mitogen-activated protein kinase,and nuclear factor (NF)-κB pathways. Inhibition of NF-κB induced apoptosis of in vitro cultured eosinophils. Selective deletion of IκBα in vivo resulted in enhanced expression of Bcl-xL and reduced apoptosis during helminth infection. Retroviral overexpression of Bcl-xL promoted survival,whereas pharmacologic inhibition of Bcl-xL in murine or human eosinophils induced rapid apoptosis. These results suggest that therapeutic strategies targeting Bcl-xL in eosinophils could improve health conditions in allergic inflammatory diseases.
View Publication
产品类型:
产品号#:
73852
产品名:
STAT5抑制剂
文献
Liu C et al. (DEC 2010)
Blood 116 25 5518--27
Progenitor cell dose determines the pace and completeness of engraftment in a xenograft model for cord blood transplantation.
Two critical concerns in clinical cord blood transplantation are the initial time to engraftment and the subsequent restoration of immune function. These studies measured the impact of progenitor cell dose on both the pace and strength of hematopoietic reconstitution by transplanting nonobese diabetic/severe combined immunodeficiency/interleukin-2 receptor-gamma-null (NSγ) mice with lineage-depleted aldehyde dehydrogenase-bright CD34(+) human cord blood progenitors. The progress of each transplant was monitored over an extended time course by repeatedly analyzing the peripheral blood for human hematopoietic cells. In vivo human hematopoietic development was complete. After long-term transplantation assays (≥ 19 weeks),human T-cell development was documented within multiple tissues in 16 of 32 NSγ mice. Human T-cell differentiation was active within NSγ thymuses,as documented by the presence of CD4(+) CD8(+) T-cell progenitors as well as T-cell receptor excision circles. It is important to note that although myeloid and B-cell engraftment was detected as early as 4 weeks after transplantation,human T-cell development was exclusively late onset. High progenitor cell doses were associated with a robust human hematopoietic chimerism that accelerated both initial time to engraftment and subsequent T-cell development. At lower progenitor cell doses,the chimerism was weak and the human hematopoietic lineage development was frequently incomplete.
View Publication
A two-dimensionally coincident second difference cosmic ray spike removal method for the fully automated processing of Raman spectra.
Charge-coupled device detectors are vulnerable to cosmic rays that can contaminate Raman spectra with positive going spikes. Because spikes can adversely affect spectral processing and data analyses,they must be removed. Although both hardware-based and software-based spike removal methods exist,they typically require parameter and threshold specification dependent on well-considered user input. Here,we present a fully automated spike removal algorithm that proceeds without requiring user input. It is minimally dependent on sample attributes,and those that are required (e.g.,standard deviation of spectral noise) can be determined with other fully automated procedures. At the core of the method is the identification and location of spikes with coincident second derivatives along both the spectral and spatiotemporal dimensions of two-dimensional datasets. The method can be applied to spectra that are relatively inhomogeneous because it provides fairly effective and selective targeting of spikes resulting in minimal distortion of spectra. Relatively effective spike removal obtained with full automation could provide substantial benefits to users where large numbers of spectra must be processed.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Aufderheide M et al. (JAN 2015)
Experimental and Toxicologic Pathology 68 1 1--11
A new computer-controlled air–liquid interface cultivation system for the generation of differentiated cell cultures of the airway epithelium
The increased application of in vitro systems in pharmacology and toxicology requires cell culture systems that facilitate the cultivation process and ensure stable,reproducible and controllable cultivation conditions. Up to now,some devices have been developed for the cultivation of cells under submersed conditions. However,systems meeting the requirements of an air-liquid interface (ALI) cultivation for the special needs of bronchial epithelial cells for example are still lacking. In order to obtain in vivo like organization and differentiation of these cells they need to be cultivated under ALI conditions on microporous membranes in direct contact with the environmental atmosphere. For this purpose,a Long-Term-Cultivation system was developed (CULTEX(®) LTC-C system) for the computer-controlled cultivation of such cells. The transwell inserts are placed in an incubator module (24 inserts),which can be adjusted for the medium level (ultrasonic pulse-echosensor),time and volume-dependent medium exchange,and frequency for mixing the medium with a rotating disc for homogeneous distribution of medium and secretion components. Normal primary freshly isolated bronchial epithelial cells were cultivated for up to 38 days to show the efficiency of such a cultivation procedure for generating 3D cultures exhibiting in vivo-like pseudostratified organization of the cells as well as differentiation characteristics like mucus-producing and cilia-forming cells.
View Publication
产品类型:
产品号#:
05001
05021
05022
产品名:
PneumaCult™-ALI 培养基
PneumaCult™-ALI 培养基含12 mm Transwell®插件
PneumaCult™-ALI 培养基含6.5 mm Transwell®插件
文献
Li Y et al. (FEB 2007)
Journal of immunology (Baltimore,Md. : 1950) 178 3 1938--47
Phosphorylated ERM is responsible for increased T cell polarization, adhesion, and migration in patients with systemic lupus erythematosus.
Systemic lupus erythematosus (SLE) is an autoimmune/inflammatory disease characterized by autoantibody production and abnormal T cells that infiltrate tissues through not well-known mechanisms. We report that SLE T lymphocytes display increased levels of CD44,ezrin,radixin,and moesin (ERM) phosphorylation,stronger actin polymerization,higher polar cap formation,and enhanced adhesion and chemotactic migration compared with T cells from patients with rheumatoid arthritis and normal individuals. Silencing of CD44 by CD44 small interfering RNA in SLE T cells inhibited significantly their ability to adhere and migrate as did treatment with Rho kinase and actin polymerization inhibitors. Forced expression of T567D-ezrin,a phosphorylation-mimic form,enhanced remarkably the adhesion and migration rate of normal T cells. Anti-CD3/TCR autoantibodies present in SLE sera caused increased ERM phosphorylation,adhesion,and migration in normal T cells. pERM and CD44 are highly expressed in T cells infiltrating in the kidneys of patients with lupus nephritis. These data prove that increased ERM phosphorylation represents a key molecular abnormality that guides T cell adhesion and migration in SLE patients.
View Publication
Epo receptors are not detectable in primary human tumor tissue samples.
Erythropoietin (Epo) is a cytokine that binds and activates an Epo receptor (EpoR) expressed on the surface of erythroid progenitor cells to promote erythropoiesis. While early studies suggested EpoR transcripts were expressed exclusively in the erythroid compartment,low-level EpoR transcripts were detected in nonhematopoietic tissues and tumor cell lines using sensitive RT-PCR methods. However due to the widespread use of nonspecific anti-EpoR antibodies there are conflicting data on EpoR protein expression. In tumor cell lines and normal human tissues examined with a specific and sensitive monoclonal antibody to human EpoR (A82),little/no EpoR protein was detected and it was not functional. In contrast,EpoR protein was reportedly detectable in a breast tumor cell line (MCF-7) and breast cancer tissues with an anti-EpoR polyclonal antibody (M-20),and functional responses to rHuEpo were reported with MCF-7 cells. In another study,a functional response was reported with the lung tumor cell line (NCI-H838) at physiological levels of rHuEpo. However,the specificity of M-20 is in question and the absence of appropriate negative controls raise questions about possible false-positive effects. Here we show that with A82,no EpoR protein was detectable in normal human and matching cancer tissues from breast,lung,colon,ovary and skin with little/no EpoR in MCF-7 and most other breast and lung tumor cell lines. We show further that M-20 provides false positive staining with tissues and it binds to a non-EpoR protein that migrates at the same size as EpoR with MCF-7 lysates. EpoR protein was detectable with NCI-H838 cells,but no rHuEpo-induced phosphorylation of AKT,STAT3,pS6RP or STAT5 was observed suggesting the EpoR was not functional. Taken together these results raise questions about the hypothesis that most tumors express high levels of functional EpoR protein.
View Publication
产品类型:
产品号#:
产品名:
文献
V. Cesarini et al. (aug 2019)
Scientific reports 9 1 12206
Regulation of PDE5 expression in human aorta and thoracic aortic aneurysms.
Aneurysms and dissections affecting thoracic aorta are associated with smooth muscle cell (SMC) dysfunction. NO/cGMP signaling pathway in smooth muscle cells has been shown to be affected in sporadic thoracic aortic aneurysms. We analyzed the mRNA levels of PDE5,a cGMP-hydrolyzing enzyme highly expressed in aortic SMCs,that regulates arterious vascular tone by lowering cGMP levels. We found that aortic tissue obtained from Marfan,tricuspid and bicuspid thoracic aneurysms expressed lower levels of PDE5 mRNA compared to control aortas. In particular,we found that affected aortas showed lower levels of all the PDE5A isoforms,compared to control aortas. Transfection of vascular SMCs (VSMCs) with NOTCH3 activated domain (NICD3) induced the expression of PDE5A1 and A3 protein isoforms,but not that of the corresponding mRNAs. VSMC stimulation with GSNO,a nitric oxide analogue or with 8-br-cGMP,but not with 8-br-cAMP,up-regulated PDE5 and NOTCH-3 protein levels,indicating a negative feedback loop to protect the arterial wall from excessive relaxation. Finally,we found that PDE5 is expressed early during human aorta development,suggesting that if loss of function mutations of PDE5 occur,they might potentially affect aortic wall development.
View Publication
产品类型:
产品号#:
04961
产品名:
MegaCult™-C胶原蛋白和细胞因子培养基
文献
Frazer-Abel AA et al. (NOV 2004)
The Journal of pharmacology and experimental therapeutics 311 2 758--69
Nicotine activates nuclear factor of activated T cells c2 (NFATc2) and prevents cell cycle entry in T cells.
We used primary peripheral blood T cells,a population that exists in G(0) and can be stimulated to enter the cell cycle synchronously,to define more precisely the effects of nicotine on pathways that control cell cycle entry and progression. Our data show that nicotine decreased the ability of T cells to transit through the G(0)/G(1) boundary (acquire competence) and respond to progression signals. These effects were due to nuclear factor of activated T cells c2 (NFATc2)-dependent repression of cyclin-dependent kinase 4 (CDK4) expression. Growth arrest at the G(0)/G(1) boundary was further enforced by inhibition of cyclin D2 expression and by increased expression and stabilization of p27Kip1. Intriguingly,T cells from habitual users of tobacco products and from NFATc2-deficient mice constitutively expressed CDK4 and were resistant to the antiproliferative effects of nicotine. These results indicate that nicotine impairs T cell cycle entry through NFATc2-dependent mechanisms and suggest that,in the face of chronic nicotine exposure,selection may favor cells that can evade these effects. We postulate that cross talk between nicotinic acetylcholine receptors and growth factor receptor-activated pathways offers a novel mechanism by which nicotine may directly impinge on cell cycle progression. This offers insight into possible reasons that underlie the unique effects of nicotine on distinct cell types and identifies new targets that may be useful control tobacco-related diseases.
View Publication
产品类型:
产品号#:
产品名:
文献
Lian RH et al. (MAY 2002)
Journal of immunology (Baltimore,Md. : 1950) 168 10 4980--7
Orderly and nonstochastic acquisition of CD94/NKG2 receptors by developing NK cells derived from embryonic stem cells in vitro.
In mice there are two families of MHC class I-specific receptors,namely the Ly49 and CD94/NKG2 receptors. The latter receptors recognize the nonclassical MHC class I Qa-1(b) and are thought to be responsible for the recognition of missing-self and the maintenance of self-tolerance of fetal and neonatal NK cells that do not express Ly49. Currently,how NK cells acquire individual CD94/NKG2 receptors during their development is not known. In this study,we have established a multistep culture method to induce differentiation of embryonic stem (ES) cells into the NK cell lineage and examined the acquisition of CD94/NKG2 by NK cells as they differentiate from ES cells in vitro. ES-derived NK (ES-NK) cells express NK cell-associated proteins and they kill certain tumor cell lines as well as MHC class I-deficient lymphoblasts. They express CD94/NKG2 heterodimers,but not Ly49 molecules,and their cytotoxicity is inhibited by Qa-1(b) on target cells. Using RT-PCR analysis,we also report that the acquisition of these individual receptor gene expressions during different stages of differentiation from ES cells to NK cells follows a predetermined order,with their order of acquisition being first CD94; subsequently NKG2D,NKG2A,and NKG2E; and finally,NKG2C. Single-cell RT-PCR showed coexpression of CD94 and NKG2 genes in most ES-NK cells,and flow cytometric analysis also detected CD94/NKG2 on most ES-NK cells,suggesting that the acquisition of these receptors by ES-NK cells in vitro is nonstochastic,orderly,and cumulative.
View Publication
产品类型:
产品号#:
06902
06952
00321
00322
00323
00324
00325
产品名:
文献
Seiwert TY et al. ( 2009)
Cancer research 69 7 3021--3031
The MET receptor tyrosine kinase is a potential novel therapeutic target for head and neck squamous cell carcinoma.
Recurrent/metastatic head and neck cancer remains a devastating disease with insufficient treatment options. We investigated the MET receptor tyrosine kinase as a novel target for the treatment of head and neck squamous cell carcinoma (HNSCC). MET/phosphorylated MET and HGF expression was analyzed in 121 tissues (HNSCC/normal) by immunohistochemistry,and in 20 HNSCC cell lines by immunoblotting. The effects of MET inhibition using small interfering RNA/two small-molecule inhibitors (SU11274/PF-2341066) on signaling,migration,viability,and angiogenesis were determined. The complete MET gene was sequenced in 66 head and neck cancer tissue samples and eight cell lines. MET gene copy number was determined in 14 cell lines and 23 tumor tissues. Drug combinations of SU11274 with cisplatin or erlotinib were tested in SCC35/HN5 cell lines. Eighty-four percent of the HNSCC samples showed MET overexpression,whereas 18 of 20 HNSCC cell lines (90%) expressed MET. HGF overexpression was present in 45% of HNSCC. MET inhibition with SU11274/PF-2341066 abrogated MET signaling,cell viability,motility/migration in vitro,and tumor angiogenesis in vivo. Mutational analysis of 66 tumor tissues and 8 cell lines identified novel mutations in the semaphorin (T230M/E168D/N375S),juxtamembrane (T1010I/R988C),and tyrosine kinase (T1275I/V1333I) domains (incidence: 13.5%). Increased MET gene copy number was present with textgreater10 copies in 3 of 23 (13%) tumor tissues. A greater-than-additive inhibition of cell growth was observed when combining a MET inhibitor with cisplatin or erlotinib and synergy may be mediated via erbB3/AKT signaling. MET is functionally important in HNSCC with prominent overexpression,increased gene copy number,and mutations. MET inhibition abrogated MET functions,including proliferation,migration/motility,and angiogenesis. MET is a promising,novel target for HNSCC and combination approaches with cisplatin or EGFR inhibitors should be explored.
View Publication