Norman JM et al. (OCT 2011)
Nature immunology 12 10 975--83
The antiviral factor APOBEC3G enhances the recognition of HIV-infected primary T cells by natural killer cells.
APOBEC3G (A3G) is an intrinsic antiviral factor that inhibits the replication of human immunodeficiency virus (HIV) by deaminating cytidine residues to uridine. This causes guanosine-to-adenosine hypermutation in the opposite strand and results in inactivation of the virus. HIV counteracts A3G through the activity of viral infectivity factor (Vif),which promotes degradation of A3G. We report that viral protein R (Vpr),which interacts with a uracil glycosylase,also counteracted A3G by diminishing the incorporation of uridine. However,this process resulted in activation of the DNA-damage–response pathway and the expression of natural killer (NK) cell–activating ligands. Our results show that pathogen-induced deamination of cytidine and the DNA-damage response to virus-mediated repair of the incorporation of uridine enhance the recognition of HIV-infected cells by NK cells.
View Publication
产品类型:
产品号#:
产品名:
文献
Harris MA et al. (DEC 2008)
Cancer research 68 24 10051--9
Cancer stem cells are enriched in the side population cells in a mouse model of glioma.
The recent identification of cancer stem cells (CSCs) in multiple human cancers provides a new inroad to understanding tumorigenesis at the cellular level. CSCs are defined by their characteristics of self-renewal,multipotentiality,and tumor initiation upon transplantation. By testing for these defining characteristics,we provide evidence for the existence of CSCs in a transgenic mouse model of glioma,S100beta-verbB;Trp53. In this glioma model,CSCs are enriched in the side population (SP) cells. These SP cells have enhanced tumor-initiating capacity,self-renewal,and multipotentiality compared with non-SP cells from the same tumors. Furthermore,gene expression analysis comparing fluorescence-activated cell sorting-sorted cancer SP cells to non-SP cancer cells and normal neural SP cells identified 45 candidate genes that are differentially expressed in glioma stem cells. We validated the expression of two genes from this list (S100a4 and S100a6) in primary mouse gliomas and human glioma samples. Analyses of xenografted human glioblastoma multiforme cell lines and primary human glioma tissues show that S100A4 and S100A6 are expressed in a small subset of cancer cells and that their abundance is positively correlated to tumor grade. In conclusion,this study shows that CSCs exist in a mouse glioma model,suggesting that this model can be used to study the molecular and cellular characteristics of CSCs in vivo and to further test the CSC hypothesis.
View Publication
产品类型:
产品号#:
05703
05704
产品名:
NeuroCult™ 分化添加物(小鼠和大鼠)
NeuroCult™ 分化试剂盒(小鼠和大鼠)
文献
Mossessova E et al. ( 2003)
Molecular cell 12 6 1403--1411
Crystal structure of ARF1*Sec7 complexed with Brefeldin A and its implications for the guanine nucleotide exchange mechanism.
ARF GTPases are activated by guanine nucleotide exchange factors (GEFs) of the Sec7 family that promote the exchange of GDP for GTP. Brefeldin A (BFA) is a fungal metabolite that binds to the ARF1*GDP*Sec7 complex and blocks GEF activity at an early stage of the reaction,prior to guanine nucleotide release. The crystal structure of the ARF1*GDP*Sec7*BFA complex shows that BFA binds at the protein-protein interface to inhibit conformational changes in ARF1 required for Sec7 to dislodge the GDP molecule. Based on a comparative analysis of the inhibited complex,nucleotide-free ARF1*Sec7 and ARF1*GDP,we suggest that,in addition to forcing nucleotide release,the ARF1-Sec7 binding energy is used to open a cavity on ARF1 to facilitate the rearrangement of hydrophobic core residues between the GDP and GTP conformations. Thus,the Sec7 domain may act as a dual catalyst,facilitating both nucleotide release and conformational switching on ARF proteins.
View Publication
产品类型:
产品号#:
73012
73014
产品名:
布雷非德菌素A
布雷非德菌素A
文献
Lehnertz B et al. (MAY 2010)
The Journal of experimental medicine 207 5 915--22
Activating and inhibitory functions for the histone lysine methyltransferase G9a in T helper cell differentiation and function.
Accumulating evidence suggests that the regulation of gene expression by histone lysine methylation is crucial for several biological processes. The histone lysine methyltransferase G9a is responsible for the majority of dimethylation of histone H3 at lysine 9 (H3K9me2) and is required for the efficient repression of developmentally regulated genes during embryonic stem cell differentiation. However,whether G9a plays a similar role in adult cells is still unclear. We identify a critical role for G9a in CD4(+) T helper (Th) cell differentiation and function. G9a-deficient Th cells are specifically impaired in their induction of Th2 lineage-specific cytokines IL-4,IL-5,and IL-13 and fail to protect against infection with the intestinal helminth Trichuris muris. Furthermore,G9a-deficient Th cells are characterised by the increased expression of IL-17A,which is associated with a loss of H3K9me2 at the Il17a locus. Collectively,our results establish unpredicted and complex roles for G9a in regulating gene expression during lineage commitment in adult CD4(+) T cells.
View Publication
产品类型:
产品号#:
21000
20119
20155
产品名:
RoboSep™- S
RoboSep™ 吸头组件抛光剂
RoboSep™分选试管套装(9个塑料管+吸头保护器)
文献
Hanson V et al. (OCT 2013)
Tissue antigens 82 4 269--75
Assessment of the purity of isolated cell populations for lineage-specific chimerism monitoring post haematopoietic stem cell transplantation.
Following haematopoietic stem cell transplantation,monitoring the proportion of donor and recipient haematopoiesis in the patient (chimerism) is an influential tool in directing further treatment choices. Short tandem repeat (STR) analysis is a method of chimerism monitoring using DNA isolated from peripheral blood,bone marrow or specific isolated cell lineages such as CD3+ T cells. For lineage-specific STR analysis on cell populations isolated from peripheral blood,a qualitative estimation of the purity of each isolated population is essential for the correct interpretation of the test data. We describe a rapid,inexpensive method for the determination of purity using a simple flow cytometry method. The method described for assessing the purity of sorted CD3+ cells can be applied to any cell population isolated using the same technology. Data obtained were comparable to results from a commercial polymerase chain reaction (PCR)-based method for the assessment of purity (Non-T Genomic Detection Kit,Accumol,Calgary,AB,Canada) (P = 0.59). Of the 303 samples tested by flow cytometry,290 (95.7%) exceeded 90% purity,and 215 (70.95%) were over 99% pure. There were some outlying samples,showing diversity between samples and the unpredictability of purity of isolated cell populations. This flow cytometry method can be easily assimilated into routine testing protocols,allowing purity assessment in multiple-sorted cell populations for lineage-specific chimerism monitoring using a single secondary antibody and giving results comparable to a PCR-based method. As purity of isolated cell lineages is affected by time after venepuncture and storage temperature,assessment of each sample is recommended to give a reliable indication of sample quality and confidence in the interpretation of the results.
View Publication
产品类型:
产品号#:
21000
20119
20155
产品名:
RoboSep™- S
RoboSep™ 吸头组件抛光剂
RoboSep™分选试管套装(9个塑料管+吸头保护器)
文献
Stanford EA et al. (APR 2016)
Molecular cancer research : MCR
Role for the Aryl Hydrocarbon Receptor and Diverse Ligands In Oral Squamous Cell Carcinoma Migration and Tumorigenesis.
Over 45,000 new cases of oral and pharyngeal cancers are diagnosed and account for over 8,000 deaths a year in the United States. An environmental chemical receptor,the aryl hydrocarbon receptor (AHR),has previously been implicated in oral squamous cell carcinoma (OSCC) initiation as well as in normal tissue-specific stem cell self-renewal. These previous studies inspired the hypothesis that the AHR plays a role in both the acquisition and progression of OSCC,as well as in the formation and maintenance of cancer stem-like cells. To test this hypothesis,AHR activity in two oral squamous cell lines was modulated with AHR prototypic,environmental and bacterial AHR ligands,AHR-specific inhibitors,and phenotypic,genomic and functional characteristics were evaluated. The data demonstrate that: 1) primary OSCC tissue expresses elevated levels of nuclear AHR as compared to normal tissue,2) Ahr mRNA expression is up-regulated in 320 primary OSCC,3) AHR hyper-activation with several ligands,including environmental and bacterial ligands,significantly increases AHR activity,ALDH1 activity,and accelerates cell migration,4) AHR inhibition blocks the rapid migration of OSCC cells and reduces cell chemoresistance,5) AHR knockdown inhibits tumorsphere formation in low adherence conditions,and 6) AHR knockdown inhibits tumor growth and increases overall survival in vivo. These data demonstrate that the AHR plays an important role in development and progression of OSCC,and specifically cancer stem-like cells. Prototypic,environmental and bacterial AHR ligands may exacerbate OSCC by enhancing expression of these properties. IMPLICATIONS This study,for the first time,demonstrates the ability of diverse AHR ligands to regulate AHR activity in oral squamous cell carcinoma cells,as well as regulate several important characteristics of oral cancer stem cells,in vivo and in vitro.
View Publication
产品类型:
产品号#:
05620
产品名:
MammoCult™ 人源培养基套装
文献
Yeo HC et al. (AUG 2016)
Scientific reports 6 31068
Genome-Wide Transcriptome and Binding Sites Analyses Identify Early FOX Expressions for Enhancing Cardiomyogenesis Efficiency of hESC Cultures.
The differentiation efficiency of human embryonic stem cells (hESCs) into heart muscle cells (cardiomyocytes) is highly sensitive to culture conditions. To elucidate the regulatory mechanisms involved,we investigated hESCs grown on three distinct culture platforms: feeder-free Matrigel,mouse embryonic fibroblast feeders,and Matrigel replated on feeders. At the outset,we profiled and quantified their differentiation efficiency,transcriptome,transcription factor binding sites and DNA-methylation. Subsequent genome-wide analyses allowed us to reconstruct the relevant interactome,thereby forming the regulatory basis for implicating the contrasting differentiation efficiency of the culture conditions. We hypothesized that the parental expressions of FOXC1,FOXD1 and FOXQ1 transcription factors (TFs) are correlative with eventual cardiomyogenic outcome. Through WNT induction of the FOX TFs,we observed the co-activation of WNT3 and EOMES which are potent inducers of mesoderm differentiation. The result strengthened our hypothesis on the regulatory role of the FOX TFs in enhancing mesoderm differentiation capacity of hESCs. Importantly,the final proportions of cells expressing cardiac markers were directly correlated to the strength of FOX inductions within 72 hours after initiation of differentiation across different cell lines and protocols. Thus,we affirmed the relationship between early FOX TF expressions and cardiomyogenesis efficiency.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Mousa JJ et al. (OCT 2016)
Proceedings of the National Academy of Sciences of the United States of America Oct 17 201609449
Structural basis for nonneutralizing antibody competition at antigenic site II of the respiratory syncytial virus fusion protein.
Palivizumab was the first antiviral monoclonal antibody (mAb) approved for therapeutic use in humans,and remains a prophylactic treatment for infants at risk for severe disease because of respiratory syncytial virus (RSV). Palivizumab is an engineered humanized version of a murine mAb targeting antigenic site II of the RSV fusion (F) protein,a key target in vaccine development. There are limited reported naturally occurring human mAbs to site II; therefore,the structural basis for human antibody recognition of this major antigenic site is poorly understood. Here,we describe a nonneutralizing class of site II-specific mAbs that competed for binding with palivizumab to postfusion RSV F protein. We also describe two classes of site II-specific neutralizing mAbs,one of which escaped competition with nonneutralizing mAbs. An X-ray crystal structure of the neutralizing mAb 14N4 in complex with F protein showed that the binding angle at which human neutralizing mAbs interact with antigenic site II determines whether or not nonneutralizing antibodies compete with their binding. Fine-mapping studies determined that nonneutralizing mAbs that interfere with binding of neutralizing mAbs recognize site II with a pose that facilitates binding to an epitope containing F surface residues on a neighboring protomer. Neutralizing antibodies,like motavizumab and a new mAb designated 3J20 that escape interference by the inhibiting mAbs,avoid such contact by binding at an angle that is shifted away from the nonneutralizing site. Furthermore,binding to rationally and computationally designed site II helix-loop-helix epitope-scaffold vaccines distinguished neutralizing from nonneutralizing site II antibodies.
View Publication
产品类型:
产品号#:
03800
03801
03802
03803
03804
03805
03806
产品名:
ClonaCell™-HY杂交瘤试剂盒
ClonaCell™-HY Medium
ClonaCell™-HY Medium
ClonaCell™-HY Medium
ClonaCell™-HY Medium
ClonaCell™-HY Medium
ClonaCell™衔接挂钩
文献
E. J. Lelliott et al. (feb 2019)
Scientific reports 9 1 1225
A novel immunogenic mouse model of melanoma for the preclinical assessment of combination targeted and immune-based therapy.
Both targeted therapy and immunotherapy have been used successfully to treat melanoma,but the development of resistance and poor response rates to the individual therapies has limited their success. Designing rational combinations of targeted therapy and immunotherapy may overcome these obstacles,but requires assessment in preclinical models with the capacity to respond to both therapeutic classes. Herein,we describe the development and characterization of a novel,immunogenic variant of the BrafV600ECdkn2a-/-Pten-/- YUMM1.1 tumor model that expresses the immunogen,ovalbumin (YOVAL1.1). We demonstrate that,unlike parental tumors,YOVAL1.1 tumors are immunogenic in vivo and can be controlled by immunotherapy. Importantly,YOVAL1.1 tumors are sensitive to targeted inhibitors of BRAFV600E and MEK,responding in a manner consistent with human BRAFV600E melanoma. The YOVAL1.1 melanoma model is transplantable,immunogenic and sensitive to clinical therapies,making it a valuable platform to guide strategic development of combined targeted therapy and immunotherapy approaches in BRAFV600E melanoma.
View Publication
产品类型:
产品号#:
产品名:
文献
Wang X et al. (DEC 2013)
Oncogene 32 49 5512--21
PPARγ maintains ERBB2-positive breast cancer stem cells.
Overexpression of the adverse prognostic marker ERBB2 occurs in 30% of breast cancers and is associated with aggressive disease and poor outcomes. Our recent findings have shown that NR1D1 and the peroxisome proliferator-activated receptor-γ (PPARγ)-binding protein (PBP) act through a common pathway in upregulating several genes in the de novo fatty acid synthesis network,which is highly active in ERBB2-positive breast cancer cells. NR1D1 and PBP are functionally related to PPARγ,a well-established positive regulator of adipogenesis and lipid storage. Here,we report that inhibition of the PPARγ pathway reduces the aldehyde dehydrogenase (ALDH)-positive population in ERBB2-positive breast cancer cells. Results from in vitro tumorsphere formation assays demonstrate that the PPARγ antagonists GW9662 and T0070907 decrease tumorsphere formation in ERBB2-positive cells,but not other breast cells. We show that the mechanism by which GW9662 treatment causes a reduction in ALDH-positive population cells is partially due to ROS,as it can be rescued by treatment with N-acetyl-cysteine. Furthermore,global gene expression analyses show that GW9662 treatment suppresses the expression of several lipogenic genes,including ACLY,MIG12,FASN and NR1D1,and the stem-cell related genes KLF4 and ALDH in BT474 cells. Antagonist treatment also decreases the level of acetylation in histone 3 and histone 4 in BT474 cells,compared with MCF7 cells. In vivo,GW9662 pre-treatment inhibits the tumor-seeding ability of BT474 cells. Together,these results show that the PPARγ pathway is critical for the cancer stem cell properties of ERBB2-positive breast cancer cells.
View Publication
产品类型:
产品号#:
01700
01705
产品名:
ALDEFLUOR™ 试剂盒
ALDEFLUOR™DEAB试剂
文献
Reya T and Clevers H (APR 2005)
Nature 434 7035 843--50
Wnt signalling in stem cells and cancer.
The canonical Wnt cascade has emerged as a critical regulator of stem cells. In many tissues,activation of Wnt signalling has also been associated with cancer. This has raised the possibility that the tightly regulated self-renewal mediated by Wnt signalling in stem and progenitor cells is subverted in cancer cells to allow malignant proliferation. Insights gained from understanding how the Wnt pathway is integrally involved in both stem cell and cancer cell maintenance and growth in the intestinal,epidermal and haematopoietic systems may serve as a paradigm for understanding the dual nature of self-renewal signals.
View Publication