Chen C et al. (JUL 2014)
Nature communications 5 4430
Role of astroglia in Down's syndrome revealed by patient-derived human-induced pluripotent stem cells.
Down's syndrome (DS),caused by trisomy of human chromosome 21,is the most common genetic cause of intellectual disability. Here we use induced pluripotent stem cells (iPSCs) derived from DS patients to identify a role for astrocytes in DS pathogenesis. DS astroglia exhibit higher levels of reactive oxygen species and lower levels of synaptogenic molecules. Astrocyte-conditioned medium collected from DS astroglia causes toxicity to neurons,and fails to promote neuronal ion channel maturation and synapse formation. Transplantation studies show that DS astroglia do not promote neurogenesis of endogenous neural stem cells in vivo. We also observed abnormal gene expression profiles from DS astroglia. Finally,we show that the FDA-approved antibiotic drug,minocycline,partially corrects the pathological phenotypes of DS astroglia by specifically modulating the expression of S100B,GFAP,inducible nitric oxide synthase,and thrombospondins 1 and 2 in DS astroglia. Our studies shed light on the pathogenesis and possible treatment of DS by targeting astrocytes with a clinically available drug.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
文献
Karystinou A et al. (MAY 2015)
Arthritis research & therapy 17 4-Mar 147
Yes-associated protein (YAP) is a negative regulator of chondrogenesis in mesenchymal stem cells.
INTRODUCTION The control of differentiation of mesenchymal stromal/stem cells (MSCs) is crucial for tissue engineering strategies employing MSCs. The purpose of this study was to investigate whether the transcriptional co-factor Yes-associated protein (YAP) regulates chondrogenic differentiation of MSCs. METHODS Expression of total YAP,its paralogue transcriptional co-activator with PDZ-binding motif (TAZ),and individual YAP transcript variants during in vitro chondrogenesis of human MSCs was determined by quantitative reverse transcription polymerase chain reaction (RT-PCR). YAP expression was confirmed by western blotting. To determine the effect of high YAP activity on chondrogenesis,C3H10T1/2 MSC-like cells were transduced with human (h)YAP and treated in micromass with bone morphogenetic protein-2 (BMP-2). Chondrogenic differentiation was assessed by alcian blue staining and expression of chondrocyte-lineage genes. BMP signalling was determined by detection of pSmad1,5,8 by western blotting and expression of BMP target genes by quantitative RT-PCR. Finally,YAP and pYAP were detected in mouse embryo hindlimbs by immunohistochemistry. RESULTS YAP,but not TAZ,was downregulated during in vitro chondrogenesis of human MSCs. One of the YAP transcript variants,however,was upregulated in high-density micromass culture. Overexpression of hYAP in murine C3H10T1/2 MSCs inhibited chondrogenic differentiation. High YAP activity in these cells decreased Smad1,5,8 phosphorylation and expression of the BMP target genes Inhibitor of DNA binding/differentiation (Id)1,Id2 and Id3 in response to BMP-2. In developing mouse limbs,Yap was nuclear in the perichondrium while mostly phosphorylated and cytosolic in cells of the cartilage anlage,suggesting downregulation of Yap co-transcriptional activity during physiological chondrogenesis in vivo. CONCLUSIONS Our findings indicate that YAP is a negative regulator of chondrogenic differentiation of MSCs. Downregulation of YAP is required for chondrogenesis through derepression of chondrogenic signalling. Therapeutic targeting of YAP to promote cartilage repair and prevent secondary osteoarthritis is an exciting prospect in rheumatology.
View Publication
产品类型:
产品号#:
产品名:
文献
Gordon DJ et al. (JUN 2015)
Oncogene 35 August 1--11
Modeling the initiation of Ewing sarcoma tumorigenesis in differentiating human embryonic stem cells.
Oncogenic transformation in Ewing sarcoma tumors is driven by the fusion oncogene EWS-FLI1. However,despite the well-established role of EWS-FLI1 in tumor initiation,the development of models of Ewing sarcoma in human cells with defined genetic elements has been challenging. Here,we report a novel approach to model the initiation of Ewing sarcoma tumorigenesis that exploits the developmental and pluripotent potential of human embryonic stem cells. The inducible expression of EWS-FLI1 in embryoid bodies,or collections of differentiating stem cells,generates cells with properties of Ewing sarcoma tumors,including characteristics of transformation. These cell lines exhibit anchorage-independent growth,a lack of contact inhibition and a strong Ewing sarcoma gene expression signature. Furthermore,these cells also demonstrate a requirement for the persistent expression of EWS-FLI1 for cell survival and growth,which is a hallmark of Ewing sarcoma tumors.Oncogene advance online publication,12 October 2015; doi:10.1038/onc.2015.368.
View Publication
产品类型:
产品号#:
07920
05893
85850
85857
产品名:
ACCUTASE™
AggreWell™ EB形成培养基
mTeSR™1
mTeSR™1
文献
Janson C et al. (OCT 2015)
Cytogenetic and Genome Research 146 4 251--260
Replication Stress and Telomere Dysfunction Are Present in Cultured Human Embryonic Stem Cells
Replication stress causes DNA damage at fragile sites in the genome. DNA damage at telomeres can initiate breakage-fusion-bridge cycles and chromosome instability,which can result in replicative senescence or tumor formation. Little is known about the extent of replication stress or telomere dysfunction in human embryonic stem cells (hESCs). hESCs are grown in culture with the expectation of being used therapeutically in humans,making it important to minimize the levels of replication stress and telomere dysfunction. Here,the hESC line UCSF4 was cultured in a defined medium with growth factor Activin A,exogenous nucleosides,or DNA polymerase inhibitor aphidicolin. We used quantitative fluorescence in situ hybridization to analyze individual telomeres for dysfunction and observed that it can be increased by aphidicolin or Activin A. In contrast,adding exogenous nucleosides relieved dysfunction,suggesting that telomere dysfunction results from replication stress. Whether these findings can be applied to other hESC lines remains to be determined. However,because the loss of telomeres can lead to chromosome instability and cancer,we conclude that hESCs grown in culture for future therapeutic purposes should be routinely checked for replication stress and telomere dysfunction.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Higuchi A et al. (DEC 2015)
Scientific Reports 5 18136
Long-term xeno-free culture of human pluripotent stem cells on hydrogels with optimal elasticity
The tentative clinical application of human pluripotent stem cells (hPSCs),such as human embryonic stem cells and human induced pluripotent stem cells,is restricted by the possibility of xenogenic contamination resulting from the use of mouse embryonic fibroblasts (MEFs) as a feeder layer. Therefore,we investigated hPSC cultures on biomaterials with different elasticities that were grafted with different nanosegments. We prepared dishes coated with polyvinylalcohol-co-itaconic acid hydrogels grafted with an oligopeptide derived from vitronectin (KGGPQVTRGDVFTMP) with elasticities ranging from 10.3 to 30.4 kPa storage moduli by controlling the crosslinking time. The hPSCs cultured on the stiffest substrates (30.4 kPa) tended to differentiate after five days of culture,whereas the hPSCs cultured on the optimal elastic substrates (25 kPa) maintained their pluripotency for over 20 passages under xeno-free conditions. These results indicate that cell culture matrices with optimal elasticity can maintain the pluripotency of hPSCs in culture.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
McCabe KL et al. (DEC 2015)
PloS one 10 12 e0145266
Efficient Generation of Human Embryonic Stem Cell-Derived Corneal Endothelial Cells by Directed Differentiation.
AIM To generate human embryonic stem cell derived corneal endothelial cells (hESC-CECs) for transplantation in patients with corneal endothelial dystrophies. MATERIALS AND METHODS Feeder-free hESC-CECs were generated by a directed differentiation protocol. hESC-CECs were characterized by morphology,expression of corneal endothelial markers,and microarray analysis of gene expression. RESULTS hESC-CECs were nearly identical morphologically to primary human corneal endothelial cells,expressed Zona Occludens 1 (ZO-1) and Na+/K+ATPase$\$1 (ATPA1) on the apical surface in monolayer culture,and produced the key proteins of Descemet's membrane,Collagen VIII$\$1 and VIII$\$2 (COL8A1 and 8A2). Quantitative PCR analysis revealed expression of all corneal endothelial pump transcripts. hESC-CECs were 96% similar to primary human adult CECs by microarray analysis. CONCLUSION hESC-CECs are morphologically similar,express corneal endothelial cell markers and express a nearly identical complement of genes compared to human adult corneal endothelial cells. hESC-CECs may be a suitable alternative to donor-derived corneal endothelium.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Valsecchi R et al. (APR 2016)
Blood 127 16 1987--97
HIF-1α regulates the interaction of chronic lymphocytic leukemia cells with the tumor microenvironment.
Hypoxia-inducible transcription factors (HIFs) regulate a wide array of adaptive responses to hypoxia and are often activated in solid tumors and hematologic malignancies due to intratumoral hypoxia and emerging new layers of regulation. We found that in chronic lymphocytic leukemia (CLL),HIF-1α is a novel regulator of the interaction of CLL cells with protective leukemia microenvironments and,in turn,is regulated by this interaction in a positive feedback loop that promotes leukemia survival and propagation. Through unbiased microarray analysis,we found that in CLL cells,HIF-1α regulates the expression of important chemokine receptors and cell adhesion molecules that control the interaction of leukemic cells with bone marrow and spleen microenvironments. Inactivation of HIF-1α impairs chemotaxis and cell adhesion to stroma,reduces bone marrow and spleen colonization in xenograft and allograft CLL mouse models,and prolongs survival in mice. Of interest,we found that in CLL cells,HIF-1α is transcriptionally regulated after coculture with stromal cells. Furthermore,HIF-1α messenger RNA levels vary significantly within CLL patients and correlate with the expression of HIF-1α target genes,including CXCR4,thus further emphasizing the relevance of HIF-1α expression to CLL pathogenesis.
View Publication
产品类型:
产品号#:
19554
19554RF
产品名:
EasySep™人Pan-B细胞富集试剂盒
RoboSep™ 人Pan-B细胞富集试剂盒
文献
Pfaender S et al. ( 2016)
Neural plasticity 2016 ID 3760702 1--15
Cellular Zinc Homeostasis Contributes to Neuronal Differentiation in Human Induced Pluripotent Stem Cells.
Disturbances in neuronal differentiation and function are an underlying factor of many brain disorders. Zinc homeostasis and signaling are important mediators for a normal brain development and function,given that zinc deficiency was shown to result in cognitive and emotional deficits in animal models that might be associated with neurodevelopmental disorders. One underlying mechanism of the observed detrimental effects of zinc deficiency on the brain might be impaired proliferation and differentiation of stem cells participating in neurogenesis. Thus,to examine the molecular mechanisms regulating zinc metabolism and signaling in differentiating neurons,using a protocol for motor neuron differentiation,we characterized the expression of zinc homeostasis genes during neurogenesis using human induced pluripotent stem cells (hiPSCs) and evaluated the influence of altered zinc levels on the expression of zinc homeostasis genes,cell survival,cell fate,and neuronal function. Our results show that zinc transporters are highly regulated genes during neuronal differentiation and that low zinc levels are associated with decreased cell survival,altered neuronal differentiation,and,in particular,synaptic function. We conclude that zinc deficiency in a critical time window during brain development might influence brain function by modulating neuronal differentiation.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
De Falco E et al. (DEC 2004)
Blood 104 12 3472--82
SDF-1 involvement in endothelial phenotype and ischemia-induced recruitment of bone marrow progenitor cells.
Chemokine stromal derived factor 1 (SDF-1) is involved in trafficking of hematopoietic stem cells (HSCs) from the bone marrow (BM) to peripheral blood (PB) and has been found to enhance postischemia angiogenesis. This study was aimed at investigating whether SDF-1 plays a role in differentiation of BM-derived c-kit(+) stem cells into endothelial progenitor cells (EPCs) and in ischemia-induced trafficking of stem cells from PB to ischemic tissues. We found that SDF-1 enhanced EPC number by promoting alpha(2),alpha(4),and alpha(5) integrin-mediated adhesion to fibronectin and collagen I. EPC differentiation was reduced in mitogen-stimulated c-kit(+) cells,while cytokine withdrawal or the overexpression of the cyclin-dependent kinase (CDK) inhibitor p16(INK4) restored such differentiation,suggesting a link between control of cell cycle and EPC differentiation. We also analyzed the time course of SDF-1 expression in a mouse model of hind-limb ischemia. Shortly after femoral artery dissection,plasma SDF-1 levels were up-regulated,while SDF-1 expression in the bone marrow was down-regulated in a timely fashion with the increase in the percentage of PB progenitor cells. An increase in ischemic tissue expression of SDF-1 at RNA and protein level was also observed. Finally,using an in vivo assay such as injection of matrigel plugs,we found that SDF-1 improves formation of tubulelike structures by coinjected c-kit(+) cells. Our findings unravel a function for SDF-1 in increase of EPC number and formation of vascular structures by bone marrow progenitor cells.
View Publication
产品类型:
产品号#:
09600
09650
产品名:
StemSpan™ SFEM
StemSpan™ SFEM
文献
Tominaga S et al. (JAN 2005)
Biochemical and biophysical research communications 326 2 499--504
Negative regulation of adipogenesis from human mesenchymal stem cells by Jun N-terminal kinase.
Human mesenchymal stem cells (hMSCs) are capable of differentiating into several cell types including adipocytes,osteoblasts,and chondrocytes,under appropriate culture conditions. We found that SP600125,an inhibitor of Jun N-terminal kinase (JNK),promoted adipogenesis whereas it repressed osteogenesis from hMSCs. SP600125 increased the expression of adipogenic transcription factors,CCAAT/enhancer-binding proteins alpha and beta as well as peroxisome proliferator-activated receptor gamma2,which suggested that the chemical acted on the early steps of transcriptional regulatory cascade in adipogenesis. A gene reporter assay showed that SP600125 and a dominant negative JNK promoted a transcriptional activity dependent on the cAMP-response element (CRE). Thus,JNK represses adipogenesis from hMSCs probably by,at least in part,inhibiting the transactivating function of CRE-binding protein. Another action of JNK,phosphorylation at Ser(307) of insulin receptor substrate-1,was also predicted to contribute to the repression of adipogenesis.
View Publication
产品类型:
产品号#:
72642
产品名:
SP600125
文献
Cho HH et al. (OCT 2005)
Journal of cellular biochemistry 96 3 533--42
Induction of osteogenic differentiation of human mesenchymal stem cells by histone deacetylase inhibitors.
Valproic acid (VPA) has been used as an anticonvulsant agent for the treatment of epilepsy,as well as a mood stabilizer for the treatment of bipolar disorder,for several decades. The mechanism of action for these effects remains to be elucidated and is most likely multifactorial. Recently,VPA has been reported to inhibit histone deacetylase (HDAC) and HDAC has been reported to play roles in differentiation of mammalian cells. In this study,the effects of HDAC inhibitors on differentiation and proliferation of human adipose tissue-derived stromal cells (hADSC) and bone marrow stromal cells (hBMSC) were determined. VPA increased osteogenic differentiation in a dose dependent manner. The pretreatment of VPA before induction of differentiation also showed stimulatory effects on osteogenic differentiation of hMSC. Trichostatin A (TSA),another HDAC inhibitor,also increased osteogenic differentiation,whereas valpromide (VPM),a structural analog of VPA which does not possess HDAC inhibitory effects,did not show any effect on osteogenic differentiation on hADSC. RT-PCR and Real-time PCR analysis revealed that VPA treatment increased osterix,osteopontin,BMP-2,and Runx2 expression. The addition of noggin inhibited VPA-induced potentiation of osteogenic differentiation. VPA inhibited proliferation of hADSC and hBMSC. Our results suggest that VPA enhance osteogenic differentiation,probably due to inhibition of HDAC,and could be useful for in vivo bone engineering using hMSC.
View Publication
产品类型:
产品号#:
72292
产品名:
丙戊酸(钠盐)
文献
Vallier L et al. (OCT 2005)
Journal of cell science 118 Pt 19 4495--509
Activin/Nodal and FGF pathways cooperate to maintain pluripotency of human embryonic stem cells.
Maintenance of pluripotency is crucial to the mammalian embryo's ability to generate the extra-embryonic and embryonic tissues that are needed for intrauterine survival and foetal development. The recent establishment of embryonic stem cells from human blastocysts (hESCs) provides an opportunity to identify the factors supporting pluripotency at early stages of human development. Using this in vitro model,we have recently shown that Nodal can block neuronal differentiation,suggesting that TGFbeta family members are involved in cell fate decisions of hESCs,including preservation of their pluripotency. Here,we report that Activin/Nodal signalling through Smad2/3 activation is necessary to maintain the pluripotent status of hESCs. Inhibition of Activin/Nodal signalling by follistatin and by overexpression of Lefty or Cerberus-Short,or by the Activin receptor inhibitor SB431542,precipitates hESC differentiation. Nevertheless,neither Nodal nor Activin is sufficient to sustain long-term hESC growth in a chemically defined medium without serum. Recent studies have shown that FGF2 can also maintain long-term expression of pluripotency markers,and we find that inhibition of the FGF signalling pathway by the tyrosine kinase inhibitor SU5402 causes hESC differentiation. However,this effect of FGF on hESC pluripotency depends on Activin/Nodal signalling,because it is blocked by SB431542. Finally,long-term maintenance of in-vitro pluripotency can be achieved with a combination of Activin or Nodal plus FGF2 in the absence of feeder-cell layers,conditioned medium or Serum Replacer. These findings suggest that the Activin/Nodal pathway maintains pluripotency through mechanism(s) in which FGF acts as a competence factor and therefore provide further evidence of distinct mechanisms for preservation of pluripotency in mouse and human ESCs.
View Publication