The hematopoietic growth factor KL is encoded by the Sl locus and is the ligand of the c-kit receptor, the gene product of the W locus.
Mutations at the steel locus (Sl) of the mouse affect the same cellular targets as mutations at the white spotting locus (W),which is allelic with the c-kit proto-oncogene. We show that KL,a hematopoietic growth factor obtained from conditioned medium of BALB/c 3T3 fibroblasts that stimulates the proliferation of mast cells and early erythroid progenitors,specifically binds to the c-kit receptor. The predicted amino acid sequence of isolated KL-specific cDNA clones suggests that KL is synthesized as an integral transmembrane protein. Linkage analysis maps the KL gene to the Sl locus on mouse chromosome 10,and KL sequences are deleted in the genome of the Sl mouse. These results indicate that the Sl locus encodes the ligand of the c-kit receptor,KL.
View Publication
产品类型:
产品号#:
产品名:
文献
Lindvall C et al. (NOV 2006)
The Journal of biological chemistry 281 46 35081--7
The Wnt signaling receptor Lrp5 is required for mammary ductal stem cell activity and Wnt1-induced tumorigenesis.
Canonical Wnt signaling has emerged as a critical regulatory pathway for stem cells. The association between ectopic activation of Wnt signaling and many different types of human cancer suggests that Wnt ligands can initiate tumor formation through altered regulation of stem cell populations. Here we have shown that mice deficient for the Wnt co-receptor Lrp5 are resistant to Wnt1-induced mammary tumors,which have been shown to be derived from the mammary stem/progenitor cell population. These mice exhibit a profound delay in tumorigenesis that is associated with reduced Wnt1-induced accumulation of mammary progenitor cells. In addition to the tumor resistance phenotype,loss of Lrp5 delays normal mammary development. The ductal trees of 5-week-old Lrp5-/- females have fewer terminal end buds,which are structures critical for juvenile ductal extension presumed to be rich in stem/progenitor cells. Consequently,the mature ductal tree is hypomorphic and does not completely fill the fat pad. Furthermore,Lrp5-/- ductal cells from mature females exhibit little to no stem cell activity in limiting dilution transplants. Finally,we have shown that Lrp5-/- embryos exhibit substantially impaired canonical Wnt signaling in the primitive stem cell compartment of the mammary placodes. These findings suggest that Lrp5-mediated canonical signaling is required for mammary ductal stem cell activity and for tumor development in response to oncogenic Wnt effectors.
View Publication
产品类型:
产品号#:
05601
产品名:
EpiCult™-B 人培养基
文献
Quintá et al. ( 2010)
Blood 115 15 3109--3117
Preclinical characterization of the selective JAK1/2 inhibitor INCB018424: therapeutic implications for the treatment of myeloproliferative neoplasms.
Constitutive JAK2 activation in hematopoietic cells by the JAK2V617F mutation recapitulates myeloproliferative neoplasm (MPN) phenotypes in mice,establishing JAK2 inhibition as a potential therapeutic strategy. Although most polycythemia vera patients carry the JAK2V617F mutation,half of those with essential thrombocythemia or primary myelofibrosis do not,suggesting alternative mechanisms for constitutive JAK-STAT signaling in MPNs. Most patients with primary myelofibrosis have elevated levels of JAK-dependent proinflammatory cytokines (eg,interleukin-6) consistent with our observation of JAK1 hyperactivation. Accordingly,we evaluated the effectiveness of selective JAK1/2 inhibition in experimental models relevant to MPNs and report on the effects of INCB018424,the first potent,selective,oral JAK1/JAK2 inhibitor to enter the clinic. INCB018424 inhibited interleukin-6 signaling (50% inhibitory concentration [IC(50)] = 281nM),and proliferation of JAK2V617F(+) Ba/F3 cells (IC(50) = 127nM). In primary cultures,INCB018424 preferentially suppressed erythroid progenitor colony formation from JAK2V617F(+) polycythemia vera patients (IC(50) = 67nM) versus healthy donors (IC(50) textgreater 400nM). In a mouse model of JAK2V617F(+) MPN,oral INCB018424 markedly reduced splenomegaly and circulating levels of inflammatory cytokines,and preferentially eliminated neoplastic cells,resulting in significantly prolonged survival without myelosuppressive or immunosuppressive effects. Preliminary clinical results support these preclinical data and establish INCB018424 as a promising oral agent for the treatment of MPNs.
View Publication
产品类型:
产品号#:
73402
73404
产品名:
Ruxolitinib
Ruxolitinib
文献
Thomas AM et al. (MAR 2011)
Journal of controlled release : official journal of the Controlled Release Society 150 2 212--9
Development of a liposomal nanoparticle formulation of 5-fluorouracil for parenteral administration: formulation design, pharmacokinetics and efficacy.
5-Fluorouracil (5-FU) is a small,very membrane permeable drug that is poorly retained within the aqueous compartment of liposomal nanoparticles (LNP). To address this problem a novel method relying on formation of a ternary complex comprising copper,low molecular weight polyethylenimine (PEI) and 5-FU has been developed. More specifically,in the presence of entrapped copper and PEI,externally added 5-FU can be efficiently encapsulated (textgreater95%) in DSPC/Chol (1,2-Distearoyl-sn-Glycero-3-Phosphocholine/cholesterol; 55:45 mol%) liposomes (130-170 nm) to achieve drug-to-lipid ratios of 0.1 (mol:mol). Drug release studies completed using this LNP formulation of 5-FU demonstrated significant improvements in drug retention in vitro and in vivo. Plasma concentrations of 5-FU were 7- to 23-fold higher when the drug was administered intravenously to mice as the LNP 5-FU formulation compared to free 5-FU. Further,the therapeutic effects of the LNP 5-FU formulation,as determined in a HT-29 subcutaneous colorectal cancer model where treatment was given QDx5,was greater than that which could be achieved with free 5-FU when compared at equivalent doses. This is the first time an active loading method has been described for 5-FU. The use of ternary metal complexation strategy to encapsulate therapeutic agents may define a unique platform for preparation of LNP drug formulations.
View Publication
B. P. Kleinstiver et al. (feb 2019)
Nature biotechnology
Engineered CRISPR-Cas12a variants with increased activities and improved targeting ranges for gene, epigenetic and base editing.
Broad use of CRISPR-Cas12a (formerly Cpf1) nucleases1 has been hindered by the requirement for an extended TTTV protospacer adjacent motif (PAM)2. To address this limitation,we engineered an enhanced Acidaminococcus sp. Cas12a variant (enAsCas12a) that has a substantially expanded targeting range,enabling targeting of many previously inaccessible PAMs. On average,enAsCas12a exhibits a twofold higher genome editing activity on sites with canonical TTTV PAMs compared to wild-type AsCas12a,and we successfully grafted a subset of mutations from enAsCas12a onto other previously described AsCas12a variants3 to enhance their activities. enAsCas12a improves the efficiency of multiplex gene editing,endogenous gene activation and C-to-T base editing,and we engineered a high-fidelity version of enAsCas12a (enAsCas12a-HF1) to reduce off-target effects. Both enAsCas12a and enAsCas12a-HF1 function in HEK293T and primary human T cells when delivered as ribonucleoprotein (RNP) complexes. Collectively,enAsCas12a provides an optimized version of Cas12a that should enable wider application of Cas12a enzymes for gene and epigenetic editing.
View Publication