Liu S and Wicha MS (SEP 2010)
Journal of clinical oncology : official journal of the American Society of Clinical Oncology 28 25 4006--12
Targeting breast cancer stem cells.
There is increasing evidence that many cancers,including breast cancer,contain populations of cells that display stem-cell properties. These breast cancer stem cells,by virtue of their relative resistance to radiation and cytotoxic chemotherapy,may contribute to treatment resistance and relapse. The elucidation of pathways that regulate these cells has led to the identification of potential therapeutic targets. A number of agents capable of targeting breast cancer stem cells in preclinical models are currently entering clinical trials. Assessment of the efficacy of the agents will require development of innovative clinical trial designs with appropriate biologic and clinical end points. The effective targeting of breast cancer stem cells has the potential to significantly improve outcome for women with both early-stage and advanced breast cancer.
View Publication
Endothelial progenitor cells and neural progenitor cells synergistically protect cerebral endothelial cells from Hypoxia/reoxygenation-induced injury via activating the PI3K/Akt pathway.
BACKGROUND Protection of cerebral endothelial cells (ECs) from hypoxia/reoxygenation (H/R)-induced injury is an important strategy for treating ischemic stroke. In this study,we investigated whether co-culture with endothelial progenitor cells (EPCs) and neural progenitor cells (NPCs) synergistically protects cerebral ECs against H/R injury and the underlying mechanism. RESULTS EPCs and NPCs were respectively generated from inducible pluripotent stem cells. Human brain ECs were used to produce an in vitro H/R-injury model. Data showed: 1) Co-culture with EPCs and NPCs synergistically inhibited H/R-induced reactive oxygen species (ROS) over-production,apoptosis,and improved the angiogenic and barrier functions (tube formation and permeability) in H/R-injured ECs. 2) Co-culture with NPCs up-regulated the expression of vascular endothelial growth factor receptor 2 (VEGFR2). 3) Co-culture with EPCs and NPCs complementarily increased vascular endothelial growth factor (VEGF) and brain-derived neurotrophic factor (BDNF) levels in conditioned medium,and synergistically up-regulated the expression of p-Akt/Akt and p-Flk1/VEGFR2 in H/R-injured ECs. 4) Those effects could be decreased or abolished by inhibition of both VEGFR2 and tyrosine kinase B (TrkB) or phosphatidylinositol-3-kinase (PI3K). CONCLUSIONS Our data demonstrate that EPCs and NPCs synergistically protect cerebral ECs from H/R-injury,via activating the PI3K/Akt pathway which mainly depends on VEGF and BDNF paracrine.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Meierovics AI et al. (OCT 2016)
The Journal of experimental medicine
MAIT cells promote inflammatory monocyte differentiation into dendritic cells during pulmonary intracellular infection.
Mucosa-associated invariant T (MAIT) cells are a unique innate T cell subset that is necessary for rapid recruitment of activated CD4(+) T cells to the lungs after pulmonary F. tularensis LVS infection. Here,we investigated the mechanisms behind this effect. We provide evidence to show that MAIT cells promote early differentiation of CCR2-dependent monocytes into monocyte-derived DCs (Mo-DCs) in the lungs after F. tularensis LVS pulmonary infection. Adoptive transfer of Mo-DCs to MAIT cell-deficient mice (MR1(-/-) mice) rescued their defect in the recruitment of activated CD4(+) T cells to the lungs. We further demonstrate that MAIT cell-dependent GM-CSF production stimulated monocyte differentiation in vitro,and that in vivo production of GM-CSF was delayed in the lungs of MR1(-/-) mice. Finally,GM-CSF-deficient mice exhibited a defect in monocyte differentiation into Mo-DCs that was phenotypically similar to MR1(-/-) mice. Overall,our data demonstrate that MAIT cells promote early pulmonary GM-CSF production,which drives the differentiation of inflammatory monocytes into Mo-DCs. Further,this delayed differentiation of Mo-DCs in MR1(-/-) mice was responsible for the delayed recruitment of activated CD4(+) T cells to the lungs. These findings establish a novel mechanism by which MAIT cells function to promote both innate and adaptive immune responses.
View Publication
产品类型:
产品号#:
18970
18970RF
产品名:
EasySep™小鼠CD11b正选试剂盒II
RoboSep™ 小鼠CD11b正选试剂盒II
文献
Lemieux ME et al. (AUG 1995)
Blood 86 4 1339--47
Characterization and purification of a primitive hematopoietic cell type in adult mouse marrow capable of lymphomyeloid differentiation in long-term marrow switch" cultures."
In this report,we describe a modification of the assay for long-term culture-initiating cells (LTC-IC) that allows a subset of murine LTC-IC (designated as LTC-ICML) to express both their myeloid (M) and lymphoid (L) differentiative potentials in vitro. The modified assay involves culturing test cells at limiting dilutions on irradiated mouse marrow feeder layers for an initial 4 weeks under conditions that support myelopoiesis and then for an additional week under conditions permissive for B-lymphopoiesis. All of the clonogenic pre-B progenitors (colony-forming unit [CFU] pre-B) detected in such postswitch LTC appear to be the progeny of uncommitted cells present in the original cell suspension because exposure of lymphoid-restricted progenitors to myeloid LTC conditions for textgreater or = 7 days was found to irreversibly terminate CFU-pre-B production and,in cultures initiated with limiting numbers of input cells (no progenitors of any type detected in textgreater 70% of cultures 1 week after the switch),the presence of CFU-pre-B was tightly associated with the presence of myeloid clonogenic cells,regardless of the purity of the input population. Limiting dilution analysis of the proportion of negative cultures measured for different numbers of input cells showed the frequency of LTC-ICML in normal adult mouse marrow to be 1 per 5 x 10(5) cells with an enrichment of approximately 500-fold in the Sca-1+ Lin-WGA+ fraction,as was also found for competitive in vivo repopulating units (CRU) and conventionally defined LTC-IC. LTC-ICML also exhibited the same resistance to treatment in vivo with 5-fluorouracil (5-FU) as CRU and LTC-IC,thereby distinguishing these three populations from the great majority of both in vitro clonogenic cells and day 12 CFU-S. The ability to quantitate cells with dual lymphoid and myeloid differentiation potentials in vitro,without the need for their prior purification,should facilitate studies of totipotent hematopoietic stem cell regulation.
View Publication
产品类型:
产品号#:
03534
03630
03134
03231
03234
03334
03434
03444
03236
产品名:
MethoCult™GF M3534
MethoCult™M3630
MethoCult™M3134
MethoCult™M3231
MethoCult™M3234
MethoCult™M3334
MethoCult™GF M3434
MethoCult™GF M3434
MethoCult™SF M3236
文献
Iori AP et al. (JUN 2004)
Bone marrow transplantation 33 11 1097--105
Pre-transplant prognostic factors for patients with high-risk leukemia undergoing an unrelated cord blood transplantation.
From July 1995 to December 2001,42 patients with leukemia aged 1-42 years underwent cord blood transplant (CBT) from unrelated,textless or = 2 antigen HLA mismatched donors. In all,26 patients were in textless or = 2nd complete remission and 16 in more advanced phase. Conditioning regimens,graft-versus-host disease (GVHD) prophylaxis and supportive policy were uniform for all patients. The cumulative incidence of engraftment was 90% (95% CI: 0.78-0.91). The cumulative incidence of III-IV grade acute- and chronic-GVHD was 9% (95% CI: 0.04-0.24) and 35% (95% CI: 0.21-0.60),respectively. The 4-year cumulative incidence of transplant-related mortality (TRM) and relapse was 28% (95% CI: 0.17-0.47) and 25% (95% CI: 0.14-0.45),respectively. The 4-year overall survival (OS),leukemia-free survival (LFS) and event-free survival (EFS) were 45% (95% CI: 0.27-0.63),47% (95% CI: 0.30-0.64) and 46% (95% CI: 0.30-0.62),respectively. In multivariate analysis,the most important factor affecting outcomes was the CFU-GM dose,associated with CMV serology (P=0.003 and 0.04,respectively) in influencing OS and with patient sex (P=0.008 and 0.03,respectively) in influencing LFS. Finally,CFU-GM dose was the only factor that affected EFS significantly (P=0.02). In conclusion,the infused cell dose expressed as in vitro progenitor cell growth is highly predictive of outcomes after an unrelated CBT and should be considered the main parameter in selecting cord blood units for transplant.
View Publication
产品类型:
产品号#:
04437
04447
产品名:
MethoCult™表达
MethoCult™表达
文献
Li J et al. (MAR 2005)
Clinical Cancer Research 11 6 2195--2204
Generation of PRL-3- and PRL-1-specific monoclonal antibodies as potential diagnostic markers for cancer metastases
PURPOSE: The PRL-3 mRNA is consistently elevated in metastatic samples derived from colorectal cancers. We sought to generate a specific PRL-3 monoclonal antibody (mAb) that might serve as a potential diagnostic marker for colorectal cancer metastasis. EXPERIMENTAL DESIGN: PRL-3 is one of three members (PRL-1,PRL-2,and PRL-3) in a unique protein-tyrosine phosphatase family. Because the three PRLs are 76% to 87% identical in their amino acid sequences,it poses a great challenge to obtain mAbs that are specific for respective phosphatase of regenerating liver (PRL) but not for the other two in the family. We screened over 1,400 hybridoma clones to generate mAbs specific to each PRL member. RESULTS: We obtained two hybridoma clones specifically against PRL-3 and another two clones specifically against PRL-1. These antibodies had been evaluated by several critical tests to show their own specificities and applications. Most importantly,the PRL-3 mAbs were assessed on 282 human colorectal tissue samples (121 normal,17 adenomas,and 144 adenocarcinomas). PRL-3 protein was detected in 11% of adenocarcinoma samples. The PRL-3- and PRL-1-specific mAbs were further examined on 204 human multiple cancer tissues. The differential expressions of PRL-3 and PRL-1 confirmed the mAbs' specificity. CONCLUSIONS: Using several approaches,we show that PRL-3- or PRL-1-specific mAbs react only to their respective antigen. The expression of PRL-3 in textgreater10% of primary colorectal cancer samples indicates that PRL-3 may prime the metastatic process. These mAbs will be useful as markers in clinical diagnosis for assessing tumor aggressiveness.
View Publication
产品类型:
产品号#:
03800
03801
03802
03803
03804
03805
03806
产品名:
ClonaCell™-HY杂交瘤试剂盒
ClonaCell™-HY Medium
ClonaCell™-HY Medium
ClonaCell™-HY Medium
ClonaCell™-HY Medium
ClonaCell™-HY Medium
ClonaCell™衔接挂钩
文献
Salah M et al. (DEC 2015)
Molecular carcinogenesis
An in vitro system to characterize prostate cancer progression identified signaling required for self-renewal.
Mutations in RB and PTEN are linked to castration resistance and poor prognosis in prostate cancer. Identification of genes that are regulated by these tumor suppressors in a context that recapitulates cancer progression may be beneficial for discovering novel therapeutic targets. Although various genetically engineered mice thus far provided tumor models with various pathological stages,they are not ideal for detecting dynamic changes in gene transcription. Additionally,it is difficult to achieve an effect specific to tumor progression via gain of functions of these genes. In this study,we developed an in vitro model to help identify RB- and PTEN-loss signatures during the malignant progression of prostate cancers. Trp53(-/-) ; Rb(f/f),Trp53(-/-) ; Pten(f/f),and Trp53(-/-) ; Rb(f/f) ; Pten(f/f) prostate epithelial cells were infected with AD-LacZ or AD-Cre. We found that deletion of Rb,Pten or both stimulated prostasphere formation and tumor development in immune-compromised mice. The GO analysis of genes affected by the deletion of Rb or Pten in Trp53(-/-) prostate epithelial cells identified a number of genes encoding cytokines,chemokines and extracellular matrix remodeling factors,but only few genes related to cell cycle progression. Two genes (Il-6 and Lox) were further analyzed. Blockade of Il-6 signaling and depletion of Lox significantly attenuated prostasphere formation in 3D culture,and in the case of IL-6,strongly suppressed tumor growth in vivo. These findings suggest that our in vitro model may be instrumental in identifying novel therapeutic targets of prostate cancer progression,and further underscore IL-6 and LOX as promising therapeutic targets. textcopyright 2015 Wiley Periodicals,Inc.
View Publication