Li M et al. (MAY 2016)
Nature medicine advance on 6 649--656
A human-specific AS3MT isoform and BORCS7 are molecular risk factors in the 10q24.32 schizophrenia-associated locus.
Genome-wide association studies (GWASs) have reported many single nucleotide polymorphisms (SNPs) associated with psychiatric disorders,but knowledge is lacking regarding molecular mechanisms. Here we show that risk alleles spanning multiple genes across the 10q24.32 schizophrenia-related locus are associated in the human brain selectively with an increase in the expression of both BLOC-1 related complex subunit 7 (BORCS7) and a previously uncharacterized,human-specific arsenite methyltransferase (AS3MT) isoform (AS3MT(d2d3)),which lacks arsenite methyltransferase activity and is more abundant in individuals with schizophrenia than in controls. Conditional-expression analysis suggests that BORCS7 and AS3MT(d2d3) signals are largely independent. GWAS risk SNPs across this region are linked with a variable number tandem repeat (VNTR) polymorphism in the first exon of AS3MT that is associated with the expression of AS3MT(d2d3) in samples from both Caucasians and African Americans. The VNTR genotype predicts promoter activity in luciferase assays,as well as DNA methylation within the AS3MT gene. Both AS3MT(d2d3) and BORCS7 are expressed in adult human neurons and astrocytes,and they are upregulated during human stem cell differentiation toward neuronal fates. Our results provide a molecular explanation for the prominent 10q24.32 locus association,including a novel and evolutionarily recent protein that is involved in early brain development and confers risk for psychiatric illness.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Twu Y-C et al. (MAR 2010)
Blood 115 12 2491--9
Phosphorylation status of transcription factor C/EBPalpha determines cell-surface poly-LacNAc branching (I antigen) formation in erythropoiesis and granulopoiesis.
The cell-surface straight and branched repeats of N-acetyllactosamine (LacNAc) units,called poly-LacNAc chains,characterize the histo-blood group i and I antigens,respectively. The transition of straight to branched poly-LacNAc chain (i to I) is determined by the I locus,which expresses 3 IGnT transcripts,IGnTA,IGnTB,and IGnTC. Our previous investigation demonstrated that the i-to-I transition in erythroid differentiation is regulated by the transcription factor CCAAT/enhancer binding protein alpha (C/EBPalpha). In the present investigation,the K-562 cell line was used as a model to show that the i-to-I transition is determined by the phosphorylation status of the C/EBPalpha Ser-21 residue,with dephosphorylated C/EBPalpha Ser-21 stimulating the transcription of the IGnTC gene,consequently resulting in I branching. Results from studies using adult erythropoietic and granulopoietic progenitor cells agreed with those derived using the K-562 cell model,with lentiviral expression of C/EBPalpha in CD34(+) hematopoietic cells demonstrating that the dephosphorylated form of C/EBPalpha Ser-21 induced the expression of I antigen,granulocytic CD15,and also erythroid CD71 antigens. Taken together,these results demonstrate that the regulation of poly-LacNAc branching (I antigen) formation in erythropoiesis and granulopoiesis share a common mechanism,with dephosphorylation of the Ser-21 residue on C/EBPalpha playing the critical role.
View Publication
产品类型:
产品号#:
09600
09650
产品名:
StemSpan™ SFEM
StemSpan™ SFEM
文献
Fiala ES et al. (SEP 1996)
Experientia 52 9 922--6
(-)-Epigallocatechin gallate, a polyphenolic tea antioxidant, inhibits peroxynitrite-mediated formation of 8-oxodeoxyguanosine and 3-nitrotyrosine.
Reaction with peroxynitrite at pH 7.4 and 37 degrees C was found to increase the 8-oxodeoxyguanosine levels in calf thymus DNA 35- 38-fold. This oxidation of deoxyguanosine,as well as the peroxynitrite-mediated nitration of tyrosine to 3-nitrotyrosine,was significantly inhibited by ascorbic acid,glutathione and (-)-epigallocatechin gallate,a polyphenolic antioxidant present in tea. For 50% inhibition of the oxidation of deoxyguanosine to 8-oxodeoxyguanosine,1.1,7.6 or 0.25 mM ascorbate,glutathione or (-)-epigallocatechin gallate,respectively,was required. For 50% inhibition of tyrosine nitration,the respective concentrations were 1.4,4.6 or 0.11 mM. Thus,(-)-epigallocatechin gallate is a significantly better inhibitor of both reactions than either ascorbate or glutathione. Reaction of (-)-epigallocatechin gallate with peroxynitrite alone resulted in the formation of a number of products. Ultraviolet spectra of two of these suggest that the tea polyphenol and/or its oxidation products are nitrated by peroxynitrite.
View Publication
产品类型:
产品号#:
73642
73644
产品名:
(-)-Epigallocatechin Gallate
文献
Fukuda I et al. (FEB 2009)
Chemistry & biology 16 2 133--40
Ginkgolic acid inhibits protein SUMOylation by blocking formation of the E1-SUMO intermediate.
Protein modification by small ubiquitin-related modifier proteins (SUMOs) controls diverse cellular functions. Dysregulation of SUMOylation or deSUMOylation processes has been implicated in the development of cancer and neurodegenerative diseases. However,no small-molecule inhibiting protein SUMOylation has been reported so far. Here,we report inhibition of SUMOylation by ginkgolic acid and its analog,anacardic acid. Ginkgolic acid and anacardic acid inhibit protein SUMOylation both in vitro and in vivo without affecting in vivo ubiquitination. Binding assays with a fluorescently labeled probe showed that ginkgolic acid directly binds E1 and inhibits the formation of the E1-SUMO intermediate. These studies will provide not only a useful tool for investigating the roles of SUMO conjugations in a variety of pathways in cells,but also a basis for the development of drugs targeted against diseases involving aberrant SUMOylation.
View Publication
产品类型:
产品号#:
产品名:
文献
Hikita T et al. (OCT 2010)
Genes to cells : devoted to molecular & cellular mechanisms 15 10 1051--62
Purvalanol A, a CDK inhibitor, effectively suppresses Src-mediated transformation by inhibiting both CDKs and c-Src.
The nonreceptor tyrosine kinase c-Src is frequently over-expressed or hyperactivated in various human cancers and contributes to cancer progression in cooperation with up-regulated growth factor receptors. However,Src-selective anticancer drugs are still in clinical trials. To identify more effective inhibitors of c-Src-mediated cancer progression,we developed a new screening platform using Csk-deficient cells that can be transformed by c-Src. We found that purvalanol A,developed as a CDK inhibitor,potently suppressed the anchorage-independent growth of c-Src-transformed cells,indicating that the activation of CDKs contributes to the c-Src transformation. We also found that purvalanol A suppressed the c-Src activity as effectively as the Src-selective inhibitor PP2,and that it reverted the transformed morphology to a nearly normal shape with less cytotoxicity than PP2. Purvalanol A induced a strong G2-M arrest,whereas PP2 weakly acted on the G1-S transition. Furthermore,when compared with PP2,purvalanol A more effectively suppressed the growth of human colon cancer HT29 and SW480 cells,in which Src family kinases and CDKs are activated. These findings demonstrate that the coordinated inhibition of cell cycle progression and tyrosine kinase signaling by the multi-selective purvalanol A is effective in suppressing cancer progression associated with c-Src up-regulation.
View Publication
产品类型:
产品号#:
产品名:
文献
A. Rogel et al. (oct 2022)
JCI insight 7 19
Fc$\gamma$ receptor-mediated cross-linking codefines the immunostimulatory activity of anti-human CD96 antibodies.
New strategies that augment T cell responses are required to broaden the therapeutic arsenal against cancer. CD96,TIGIT,and CD226 are receptors that bind to a communal ligand,CD155,and transduce either inhibitory or activating signals. The function of TIGIT and CD226 is established,whereas the role of CD96 remains ambiguous. Using a panel of engineered antibodies,we discovered that the T cell stimulatory activity of anti-CD96 antibodies requires antibody cross-linking and is potentiated by Fc$\gamma$ receptors. Thus,soluble Fc silent" anti-CD96 antibodies failed to stimulate human T cells whereas the same antibodies were stimulatory after coating onto plastic surfaces. Remarkably the activity of soluble anti-CD96 antibodies was reinstated by engineering the Fc domain to a human IgG1 isotype and it was dependent on antibody trans-cross-linking by Fc$\gamma$RI. In contrast neither human IgG2 nor variants with increased Fc$\gamma$ receptor IIB binding possessed stimulatory activity. Anti-CD96 antibodies acted directly on T cells and augmented gene expression networks associated with T cell activation leading to proliferation cytokine secretion and resistance to Treg suppression. Furthermore CD96 expression correlated with survival in HPV+ head and neck squamous cell carcinoma and its cross-linking activated tumor-infiltrating T cells thus highlighting the potential of anti-CD96 antibodies in cancer immunotherapy."
View Publication
产品类型:
产品号#:
17853
18063
产品名:
EasySep™人CD8正选试剂盒 II
EasySep™人CD4+CD127low CD25+调节性T细胞分选试剂盒
文献
Smith S et al. (NOV 1998)
Science (New York,N.Y.) 282 5393 1484--7
Tankyrase, a poly(ADP-ribose) polymerase at human telomeres.
Tankyrase,a protein with homology to ankyrins and to the catalytic domain of poly(adenosine diphosphate-ribose) polymerase (PARP),was identified and localized to human telomeres. Tankyrase binds to the telomeric protein TRF1 (telomeric repeat binding factor-1),a negative regulator of telomere length maintenance. Like ankyrins,tankyrase contains 24 ankyrin repeats in a domain responsible for its interaction with TRF1. Recombinant tankyrase was found to have PARP activity in vitro,with both TRF1 and tankyrase functioning as acceptors for adenosine diphosphate (ADP)-ribosylation. ADP-ribosylation of TRF1 diminished its ability to bind to telomeric DNA in vitro,suggesting that telomere function in human cells is regulated by poly(ADP-ribosyl)ation.
View Publication
产品类型:
产品号#:
72672
72674
产品名:
XAV939
XAV939
文献
Schneider E et al. (SEP 2009)
Journal of immunology (Baltimore,Md. : 1950) 183 6 3591--7
IL-33 activates unprimed murine basophils directly in vitro and induces their in vivo expansion indirectly by promoting hematopoietic growth factor production.
IL-33,a new member of the IL-1 family,has been described as an important inducer of Th2 cytokines and mediator of inflammatory responses. In this study,we demonstrate that murine basophils sorted directly from the bone marrow,without prior exposure to IL-3 or Fc(epsilon)R cross-linking,respond to IL-33 alone by producing substantial amounts of histamine,IL-4,and IL-6. These cells express ST2 constitutively and generate a cytokine profile that differs from their IL-3-induced counterpart by a preferential production of IL-6. In vivo,IL-33 promotes basophil expansion in the bone marrow (BM) through an indirect mechanism of action depending on signaling through the beta(c) chain shared by receptors for IL-3,GM-CSF,and IL-5. IL-3 can still signal through its specific beta(IL-3) chain in these mutant mice,which implies that it is not the unique growth-promoting mediator in this setup,but requires IL-5 and/or GMCSF. Our results support a major role of the latter growth factor,which is readily generated by total BM cells as well as sorted basophils in response to IL-33 along with low amounts of IL-3. Furthermore,GM-CSF amplifies IL-3-induced differentiation of basophils from BM cells,whereas IL-5 that is also generated in vivo,affects neither their functions nor their growth in vitro or in vivo. In conclusion,our data provide the first evidence that IL-33 not only activates unprimed basophils directly,but also promotes their expansion in vivo through induction of GM-CSF and IL-3.
View Publication
产品类型:
产品号#:
18755
18755RF
产品名:
EasySep™小鼠CD49b正选试剂盒
RoboSep™ 小鼠CD49b正选试剂盒含滤芯吸头
文献
Alvarado G and Crowe JE ( 2016)
1442 63--76
Development of human monoclonal antibodies against respiratory syncytial virus using a high efficiency human hybridoma technique.
Human monoclonal antibodies against RSV have high potential for use as prophylaxis or therapeutic molecules,and they also can be used to define the structure of protective epitopes for rational vaccine design. In the past,however,isolation of human monoclonal antibodies was difficult and inefficient. Here,we describe contemporary methods for activation and proliferation of primary human memory B cells followed by cytofusion to non-secreting myeloma cells by dielectrophoresis to generate human hybridomas secreting RSV-specific monoclonal antibodies. We also provide experimental methods for screening human B cell lines to obtain RSV-specific lines,especially lines secreting neutralizing antibodies.
View Publication
产品类型:
产品号#:
03800
03801
03802
03803
03804
03805
03806
产品名:
ClonaCell™-HY杂交瘤试剂盒
ClonaCell™-HY Medium
ClonaCell™-HY Medium
ClonaCell™-HY Medium
ClonaCell™-HY Medium
ClonaCell™-HY Medium
ClonaCell™衔接挂钩
文献
Lee WJ et al. (OCT 2005)
Molecular pharmacology 68 4 1018--30
Mechanisms for the inhibition of DNA methyltransferases by tea catechins and bioflavonoids.
In the present investigation,we studied the modulating effects of several tea catechins and bioflavonoids on DNA methylation catalyzed by prokaryotic SssI DNA methyltransferase (DNMT) and human DNMT1. We found that each of the tea polyphenols [catechin,epicatechin,and (-)-epigallocatechin-3-O-gallate (EGCG)] and bioflavonoids (quercetin,fisetin,and myricetin) inhibited SssI DNMT- and DNMT1-mediated DNA methylation in a concentration-dependent manner. The IC(50) values for catechin,epicatechin,and various flavonoids ranged from 1.0 to 8.4 microM,but EGCG was a more potent inhibitor,with IC(50) values ranging from 0.21 to 0.47 microM. When epicatechin was used as a model inhibitor,kinetic analyses showed that this catechol-containing dietary polyphenol inhibited enzymatic DNA methylation in vitro largely by increasing the formation of S-adenosyl-L-homocysteine (a potent noncompetitive inhibitor of DNMTs) during the catechol-O-methyltransferase-mediated O-methylation of this dietary catechol. In comparison,the strong inhibitory effect of EGCG on DNMT-mediated DNA methylation was independent of its own methylation and was largely due to its direct inhibition of the DNMTs. This inhibition is strongly enhanced by Mg(2+). Computational modeling studies showed that the gallic acid moiety of EGCG plays a crucial role in its high-affinity,direct inhibitory interaction with the catalytic site of the human DNMT1,and its binding with the enzyme is stabilized by Mg(2+). The modeling data on the precise molecular mode of EGCG's inhibitory interaction with human DNMT1 agrees perfectly with our experimental finding.
View Publication
产品类型:
产品号#:
73644
产品名:
(-)-Epigallocatechin Gallate
文献
Kubicek S et al. (FEB 2007)
Molecular cell 25 3 473--81
Reversal of H3K9me2 by a small-molecule inhibitor for the G9a histone methyltransferase.
Histone lysine methylation has important roles in the organization of chromatin domains and the regulation of gene expression. To analyze its function and modulate its activity,we screened for specific inhibitors against histone lysine methyltransferases (HMTases) using recombinant G9a as the target enzyme. From a chemical library comprising 125,000 preselected compounds,seven hits were identified. Of those,one inhibitor,BIX-01294 (diazepin-quinazolin-amine derivative),does not compete with the cofactor S-adenosyl-methionine,and selectively impairs the G9a HMTase and the generation of H3K9me2 in vitro. In cellular assays,transient incubation of several cell lines with BIX-01294 lowers bulk H3K9me2 levels that are restored upon removal of the inhibitor. Importantly,chromatin immunoprecipitation at several G9a target genes demonstrates reversible reduction of promoter-proximal H3K9me2 in inhibitor-treated mouse ES cells and fibroblasts. Our data identify a biologically active HMTase inhibitor that allows for the transient modulation of H3K9me2 marks in mammalian chromatin.
View Publication
产品类型:
产品号#:
72042
72044
产品名:
BIX01294 (Trihydrochloride Hydrate)
BIX01294 (Trihydrochloride Hydrate)
文献
An MC et al. ( 2014)
PLoS currents 6 1--19
Polyglutamine Disease Modeling: Epitope Based Screen for Homologous Recombination using CRISPR/Cas9 System.
We have previously reported the genetic correction of Huntington's disease (HD) patient-derived induced pluripotent stem cells using traditional homologous recombination (HR) approaches. To extend this work,we have adopted a CRISPR-based genome editing approach to improve the efficiency of recombination in order to generate allelic isogenic HD models in human cells. Incorporation of a rapid antibody-based screening approach to measure recombination provides a powerful method to determine relative efficiency of genome editing for modeling polyglutamine diseases or understanding factors that modulate CRISPR/Cas9 HR.
View Publication