Sammar M et al. (JUL 1994)
International immunology 6 7 1027--36
Heat-stable antigen (CD24) as ligand for mouse P-selectin.
Heat-stable antigen (HSA)/CD24 is a cell surface molecule expressed by many cell types in the mouse. The molecule has an unusual structure because of its small protein core and extensive glycosylation. In order to study the functional role of the HSA-associated glycoconjugates we have isolated different forms of HSA. Using lectin analysis we provide evidence for extensive heterogeneity in carbohydrate composition and sialic acid linkage. Several HSA forms were recognized by mouse P-selectin-IgG but not E-selectin-IgG in ELISA. As expected,P-selectin-IgG also bound to L2/HNK-1-positive neural glycoproteins (L2-glycoproteins) and sulfatides but not to gangliosides and other control glycoproteins. The binding of P-selectin-IgG to L2-glycoproteins and HSA required bivalent cations. The reactivity to HSA was sensitive to sialidase treatment whereas the binding to L2-glycoproteins was not. Studies with alpha 2-6 sialytransferase indicated that alpha 2-6 linked sialic acid was not involved in the P-selectin binding to HSA. Surprisingly,an L2/HNK-1 specific antibody was found to cross-react with some HSA glycoforms and its binding correlated with P-selectin-IgG reactivity. L2/HNK-1-positive or L2/HNK-1-negative HSA glycoforms were also analyzed after coating to polystyrene beads. Only the L2/HNK-1-positive HSA coated beads were reactive with P-selectin-IgG and could bind to activated bend3 endothelioma cells expressing P-selectin whereas the L2/HNK-1-negative HSA beads did not. It is suggested that in its L2/HNK-1 modified form the HSA molecule on leukocytes could represent a ligand for P-selectin on endothelial cells or platelets.
View Publication
Chang K-H et al. (JUN 2007)
Proceedings of the National Academy of Sciences of the United States of America 104 25 10595--600
IGF binding protein-3 regulates hematopoietic stem cell and endothelial precursor cell function during vascular development.
We asked whether the hypoxia-regulated factor,insulin-like growth factor binding protein-3 (IGFBP3),could modulate stem cell factor receptor (c-kit+),stem cell antigen-1 (sca-1+),hematopoietic stem cell (HSC),or CD34+ endothelial precursor cell (EPC) function. Exposure of CD34+ EPCs to IGFBP3 resulted in rapid differentiation into endothelial cells and dose-dependent increases in cell migration and capillary tube formation. IGFBP3-expressing plasmid was injected into the vitreous of neonatal mice undergoing the oxygen-induced retinopathy (OIR) model. In separate studies,GFP-expressing HSCs were transfected with IGFBP3 plasmid and injected into the vitreous of OIR mice. Administering either IGFBP3 plasmid alone or HSCs transfected with the plasmid resulted in a similar reduction in areas of vasoobliteration,protection of the developing vasculature from hyperoxia-induced regression,and reduction in preretinal neovascularization compared to control plasmid or HSCs transfected with control plasmid. In conclusion,IGFBP3 mediates EPC migration,differentiation,and capillary formation in vitro. Targeted expression of IGFBP3 protects the vasculature from damage and promotes proper vascular repair after hyperoxic insult in the OIR model. IGFBP3 expression may represent a physiological adaptation to ischemia and potentially a therapeutic target for treatment of ischemic conditions.
View Publication
产品类型:
产品号#:
产品名:
文献
McKinney-Freeman SL et al. (MAY 2008)
Blood 111 10 4944--53
Modulation of murine embryonic stem cell-derived CD41+c-kit+ hematopoietic progenitors by ectopic expression of Cdx genes.
Cdx1,Cdx2,and Cdx4 comprise the caudal-like Cdx gene family in mammals,whose homologues regulate hematopoietic development in zebrafish. Previously,we reported that overexpression of Cdx4 enhances hematopoietic potential from murine embryonic stem cells (ESCs). Here we compare the effect of ectopic Cdx1,Cdx2,and Cdx4 on the differentiation of murine ESC-derived hematopoietic progenitors. The 3 Cdx genes differentially influence the formation and differentiation of hematopoietic progenitors within a CD41(+)c-kit(+) population of embryoid body (EB)-derived cells. Cdx1 and Cdx4 enhance,whereas Cdx2 strongly inhibits,the hematopoietic potential of CD41(+)ckit(+) EB-derived cells,changes that are reflected by effects on hematopoietic lineage-specific and Hox gene expression. When we subject stromal cell and colony assay cultures of EB-derived hematopoietic progenitors to ectopic expression of Cdx genes,Cdx4 dramatically enhances,whereas Cdx1 and Cdx2 both inhibit hematopoietic activity,probably by blocking progenitor differentiation. These data demonstrate distinct effects of Cdx genes on hematopoietic progenitor formation and differentiation,insights that we are using to facilitate efforts at in vitro culture of hematopoietic progenitors from ESC. The behavior of Cdx genes in vitro suggests how derangement of these developmental regulators might contribute to leukemogenesis.
View Publication
Copeland RA et al. (SEP 2009)
Nature reviews. Drug discovery 8 9 724--32
Protein methyltransferases as a target class for drug discovery.
The protein methyltransferases (PMTs) - which methylate protein lysine and arginine residues and have crucial roles in gene transcription - are emerging as an important group of enzymes that play key parts in normal physiology and human diseases. The collection of human PMTs is a large and diverse group of enzymes that have a common mechanism of catalysis. Here,we review the biological,biochemical and structural data that together present PMTs as a novel,chemically tractable target class for drug discovery.
View Publication
产品类型:
产品号#:
产品名:
文献
Suvà et al. (DEC 2009)
Cancer research 69 24 9211--8
EZH2 is essential for glioblastoma cancer stem cell maintenance.
Overexpression of the polycomb group protein enhancer of zeste homologue 2 (EZH2) occurs in diverse malignancies,including prostate cancer,breast cancer,and glioblastoma multiforme (GBM). Based on its ability to modulate transcription of key genes implicated in cell cycle control,DNA repair,and cell differentiation,EZH2 is believed to play a crucial role in tissue-specific stem cell maintenance and tumor development. Here,we show that targeted pharmacologic disruption of EZH2 by the S-adenosylhomocysteine hydrolase inhibitor 3-deazaneplanocin A (DZNep),or its specific downregulation by short hairpin RNA (shRNA),strongly impairs GBM cancer stem cell (CSC) self-renewal in vitro and tumor-initiating capacity in vivo. Using genome-wide expression analysis of DZNep-treated GBM CSCs,we found the expression of c-myc,recently reported to be essential for GBM CSCs,to be strongly repressed upon EZH2 depletion. Specific shRNA-mediated downregulation of EZH2 in combination with chromatin immunoprecipitation experiments revealed that c-myc is a direct target of EZH2 in GBM CSCs. Taken together,our observations provide evidence that direct transcriptional regulation of c-myc by EZH2 may constitute a novel mechanism underlying GBM CSC maintenance and suggest that EZH2 may be a valuable new therapeutic target for GBM management.
View Publication
产品类型:
产品号#:
72322
72324
产品名:
3-Deazaneplanocin A
3-Deazaneplanocin A
文献
Rouhi A et al. (MAR 2006)
Journal of immunology (Baltimore,Md. : 1950) 176 5 2991--9
Evidence for epigenetic maintenance of Ly49a monoallelic gene expression.
Although structurally unrelated,the human killer cell Ig-like (KIR) genes and the rodent lectin-like Ly49 genes serve similar functional roles in NK cells. Moreover,both gene families display variegated,monoallelic expression patterns established at the transcriptional level. DNA methylation has been shown to play an important role in maintenance of expression patterns of KIR genes,which have CpG island promoters. The potential role of DNA methylation in expression of Ly49 genes,which have CpG-poor promoters,is unknown. In this study,we show that hypomethylation of the region encompassing the Pro-2 promoter of Ly49a and Ly49c in primary C57BL/6 NK cells correlates with expression of the gene. Using C57BL/6 x BALB/c F1 hybrid mice,we demonstrate that the expressed allele of Ly49a is hypomethylated while the nonexpressed allele is heavily methylated,indicating a role for epigenetics in maintaining monoallelic Ly49 gene expression. Furthermore,the Ly49a Pro-2 region is heavily methylated in fetal NK cells but variably methylated in nonlymphoid tissues. Finally,in apparent contrast to the KIR genes,we show that DNA methylation and the histone acetylation state of the Pro-2 region are strictly linked with Ly49a expression status.
View Publication
Oronsky B et al. (OCT 2014)
Translational oncology 7 5 626--31
Rewriting the epigenetic code for tumor resensitization: a review.
In cancer chemotherapy,one axiom,which has practically solidified into dogma,is that acquired resistance to antitumor agents or regimens,nearly inevitable in all patients with metastatic disease,remains unalterable and irreversible,rendering therapeutic rechallenge futile. However,the introduction of epigenetic therapies,including histone deacetylase inhibitors (HDACis) and DNA methyltransferase inhibitors (DNMTIs),provides oncologists,like computer programmers,with new techniques to overwrite" the modifiable software pattern of gene expression in tumors and challenge the "one and done" treatment prescription. Taking the epigenetic code-as-software analogy a step further�
View Publication