Rahman M et al. (SEP 2013)
Future Oncology 9 9 1389--1396
Controlling tumor invasion: bevacizumab and BMP4 for glioblastoma
AIM Bevacizumab has been reported to result in increased tumor invasion when used to treat malignant glioma. We hypothesized that BMP4 would prevent diffuse tumor infiltration induced by bevacizumab for malignant glioma in a xenograft model. METHODS Human glioblastoma (GBM) tumor cells were implanted in the striatum of immunocompromised mice. The animals were treated with bevacizumab and BMP4. Tumor growth and invasion were measured. RESULTS The bevacizumab-treated mice had increased survival compared with control animals (p = 0.02). BMP4 alone did not result in improved survival (p = 1.0). The bevacizumab (p = 0.006) and bevacizumab plus BMP4 (p = 0.006) groups demonstrated significantly decreased total tumor size compared with control. Tumor invasion was significantly decreased in the bevacizumab (p = 0.005),BMP4 (p = 0.04) alone and bevacizumab plus BMP4 (p = 0.002) groups compared with control. No synergistic effect between bevacizumab and BMP4 was observed. CONCLUSION Bevacizumab treatment did not result in diffuse infiltration of human GBM in a mouse xenograft model. BMP4 did have an independent favorable effect on GBM that was not synergistic with bevacizumab treatment.
View Publication
Paul SR et al. (OCT 1990)
Proceedings of the National Academy of Sciences of the United States of America 87 19 7512--6
Molecular cloning of a cDNA encoding interleukin 11, a stromal cell-derived lymphopoietic and hematopoietic cytokine.
Hematopoiesis occurs in close association with a complex network of cells loosely termed the hematopoietic microenvironment. Analysis of the mechanisms of microenvironmental regulation of hematopoiesis has been hindered by the complexity of the microenvironment as well as the heterogeneity of hematopoietic stem cells and early progenitor cells. We have established immortalized primate bone marrow-derived stromal cell lines to facilitate analysis of the interactions of hematopoietic cells with the microenvironment in a large animal species. One such line,PU-34,was found to produce a variety of growth factors,including an activity that stimulates the proliferation of an interleukin 6-dependent murine plasmacytoma cell line. A cDNA encoding the plasmacytoma stimulatory activity was isolated through functional expression cloning in mammalian cells. The nucleotide sequence contained a single long reading frame of 597 nucleotides encoding a predicted 199-amino acid polypeptide. The amino acid sequence of this cytokine,designated interleukin 11 (IL-11),did not display significant similarity with any other sequence in the GenBank data base. Preliminary biological characterization indicates that in addition to stimulating plasmacytoma proliferation,IL-11 stimulates the T-cell-dependent development of immunoglobulin-producing B cells and synergizes with IL-3 in supporting murine megakaryocyte colony formation. These properties implicate IL-11 as an additional multifunctional regulator in the hematopoietic microenvironment.
View Publication
产品类型:
产品号#:
产品名:
文献
Cron RQ et al. (JAN 2006)
Journal of immunology (Baltimore,Md. : 1950) 176 2 811--8
Early growth response-1 is required for CD154 transcription.
CD154 (CD40 ligand) expression on CD4 T cells is normally tightly controlled,but abnormal or dysregulated expression of CD154 has been well documented in autoimmune diseases,such as systemic lupus erythematosus. Beyond regulation by NFAT proteins,little is known about the transcriptional activation of the CD154 promoter. We identified a species-conserved purine-rich sequence located adjacent to the CD154 transcriptional promoter proximal NFAT site,which binds early growth response (Egr) transcription factors. Gel shift assays and chromatin immunoprecipitation assays reveal that Egr-1,Egr-3,and NFAT1 present in primary human CD4 T cells are capable of binding this combinatorial site in vitro and in vivo,respectively. Multimerization of this NFAT/Egr sequence in the context of a reporter gene demonstrates this sequence is transcriptionally active upon T cell activation in primary human CD4 T cells. Overexpression of Egr-1,but not Egr-3,is capable of augmenting transcription of this reporter gene as well as that of an intact CD154 promoter. Conversely,overexpression of small interfering RNA specific for Egr-1 in primary human CD4 T cells inhibits CD154 expression. Similarly,upon activation,CD154 message is notably decreased in splenic CD4 T cells from Egr-1-deficient mice compared with wild-type controls. Our data demonstrate that Egr-1 is required for CD154 transcription in primary CD4 T cells. This has implications for selective targeting of Egr family members to control abnormal expression of CD154 in autoimmune diseases such as systemic lupus erythematosus.
View Publication
3D printing of soft lithography mold for rapid production of polydimethylsiloxane-based microfluidic devices for cell stimulation with concentration gradients
Three-dimensional (3D) printing is advantageous over conventional technologies for the fabrication of sophisticated structures such as 3D micro-channels for future applications in tissue engineering and drug screening. We aimed to apply this technology to cell-based assays using polydimethylsiloxane (PDMS),the most commonly used material for fabrication of micro-channels used for cell culture experiments. Useful properties of PDMS include biocompatibility,gas permeability and transparency. We developed a simple and robust protocol to generate PDMS-based devices using a soft lithography mold produced by 3D printing. 3D chemical gradients were then generated to stimulate cells confined to a micro-channel. We demonstrate that concentration gradients of growth factors,important regulators of cell/tissue functions in vivo,influence the survival and growth of human embryonic stem cells. Thus,this approach for generation of 3D concentration gradients could have strong implications for tissue engineering and drug screening.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Smith Sa et al. (MAR 2012)
Journal of Virology 86 5 2665--75
Persistence of circulating memory B cell clones with potential for Dengue virus disease enhancement for decades following infection
Symptomatic dengue virus infection ranges in disease severity from an influenza-like illness to life-threatening shock. One model of the mechanism underlying severe disease proposes that weakly neutralizing,dengue serotype cross-reactive antibodies induced during a primary infection facilitate virus entry into Fc receptor-bearing cells during a subsequent secondary infection,increasing viral replication and the release of cytokines and vasoactive mediators,culminating in shock. This process has been termed antibody-dependent enhancement of infection and has significantly hindered vaccine development. Much of our understanding of this process has come from studies using mouse monoclonal antibodies (MAbs); however,antibody responses in mice typically exhibit less complexity than those in humans. A better understanding of the humoral immune response to natural dengue virus infection in humans is sorely needed. Using a high-efficiency human hybridoma technology,we isolated 37 hybridomas secreting human MAbs to dengue viruses from 12 subjects years or even decades following primary or secondary infection. The majority of the human antibodies recovered were broadly cross-reactive,directed against either envelope or premembrane proteins,and capable of enhancement of infection in vitro; few exhibited serotype-specific binding or potent neutralizing activity. Memory B cells encoding enhancing antibodies predominated in the circulation,even two or more decades following infection. Mapping the epitopes and activity of naturally occurring dengue antibodies should prove valuable in determining whether the enhancing and neutralizing activity of antibodies can be separated. Such principles could be used in the rational design of vaccines that enhance the induction of neutralizing antibodies,while lowering the risk of dengue shock syndrome.
View Publication
产品类型:
产品号#:
03800
03801
03802
03803
03804
03805
03806
产品名:
ClonaCell™-HY杂交瘤试剂盒
ClonaCell™-HY Medium
ClonaCell™-HY Medium
ClonaCell™-HY Medium
ClonaCell™-HY Medium
ClonaCell™-HY Medium
ClonaCell™衔接挂钩
文献
Rybtsov S et al. (JUN 2011)
The Journal of experimental medicine 208 6 1305--15
Hierarchical organization and early hematopoietic specification of the developing HSC lineage in the AGM region.
The aorta-gonad-mesonephros region plays an important role in hematopoietic stem cell (HSC) development during mouse embryogenesis. The vascular endothelial cadherin�?� CD45�?� (VE-cad�?�CD45�?�) population contains the major type of immature pre-HSCs capable of developing into long-term repopulating definitive HSCs. In this study,we developed a new coaggregation culture system,which supports maturation of a novel population of CD45-negative (VE-cad�?�CD45�?�CD41�?�) pre-HSCs into definitive HSCs. The appearance of these pre-HSCs precedes development of the VE-cad�?�CD45�?� pre-HSCs (termed here type I and type II pre-HSCs,respectively),thus establishing a hierarchical directionality in the developing HSC lineage. By labeling the luminal surface of the dorsal aorta,we show that both type I and type II pre-HSCs are distributed broadly within the endothelial and subendothelial aortic layers,in contrast to mature definitive HSCs which localize to the aortic endothelial layer. In agreement with expression of CD41 in pre-HSCs,in vivo CD41-Cre-mediated genetic tagging occurs in embryonic pre-HSCs and persists in all lymphomyeloid lineages of the adult animal.
View Publication