Qiao Y et al. (APR 2011)
Cancer research 71 8 3076--86
FOXQ1 regulates epithelial-mesenchymal transition in human cancers.
Epithelial-mesenchymal transition (EMT) in cancer cells plays a pivotal role in determining metastatic prowess,but knowledge of EMT regulation remains incomplete. In this study,we defined a critical functional role for the Forkhead transcription factor FOXQ1 in regulating EMT in breast cancer cells. FOXQ1 expression was correlated with high-grade basal-like breast cancers and was associated with poor clinical outcomes. RNAi-mediated suppression of FOXQ1 expression in highly invasive human breast cancer cells reversed EMT,reduced invasive ability,and alleviated other aggressive cancer phenotypes manifested in 3-dimensional Matrigel (BD Biosciences) culture. Conversely,enforced expression of FOXQ1 in differentiated human mammary epithelial cells (HMLER) or epithelial cancer cell lines provoked an epithelial to mesenchymal morphologic change,gain of stem cell-like properties,and acquisition of resistance to chemotherapy-induced apoptosis. Mechanistic investigations revealed that FOXQ1-induced EMT was associated with transcriptional inactivation of the epithelial regulator E-cadherin (CDH1). Our findings define a key role for FOXQ1 in regulating EMT and aggressiveness in human cancer.
View Publication
On-demand optogenetic activation of human stem-cell-derived neurons
The widespread application of human stem-cell-derived neurons for functional studies is impeded by complicated differentiation protocols,immaturity,and deficient optogene expression as stem cells frequently lose transgene expression over time. Here we report a simple but precise Cre-loxP-based strategy for generating conditional,and thereby stable,optogenetic human stem-cell lines. These cells can be easily and efficiently differentiated into functional neurons,and optogene expression can be triggered by administering Cre protein to the cultures. This conditional expression system may be applied to stem-cell-derived neurons whenever timed transgene expression could help to overcome silencing at the stem-cell level.
View Publication
产品类型:
产品号#:
05711
05790
05792
05793
05794
05795
产品名:
NeuroCult™ SM1 神经添加物
BrainPhys™神经元培养基
BrainPhys™神经元培养基和SM1试剂盒
BrainPhys™ 神经元培养基N2-A和SM1试剂盒
BrainPhys™原代神经元试剂盒
BrainPhys™ hPSC 神经元试剂盒
文献
Poloni A et al. (JAN 2015)
Journal of Molecular Neuroscience 55 1 91--98
Glial-Like Differentiation Potential of Human Mature Adipocytes
The potential ability to differentiate dedifferentiated adipocytes into a neural lineage is attracting strong interest as an emerging method of producing model cells for the treatment of a variety of neurological diseases. Here,we describe the efficient conversion of dedifferentiated adipocytes into a neural-like cell population. These cells grew in neurosphere-like structures and expressed a high level of the early neuroectodermal marker Nestin. These neurospheres could proliferate and express stemness genes,suggesting that these cells could be committed to the neural lineage. After neural induction,NeuroD1,Sox1,Double Cortin,and Eno2 were not expressed. Patch clamp data did not reveal different electrophysiological properties,indicating the inability of these cells to differentiate into mature neurons. In contrast,the differentiated cells expressed a high level of CLDN11,as demonstrated using molecular method,and stained positively for the glial cell markers CLDN11 and GFAP,as demonstrated using immunocytochemistry. These data were confirmed by quantitative results for glial cell line-derived neurotrophic factor production,which showed a higher secretion level in neurospheres and the differentiated cells compared with the untreated cells. In conclusion,our data demonstrate morphological,molecular,and immunocytochemical evidence of initial neural differentiation of mature adipocytes,committing to a glial lineage.
View Publication
产品类型:
产品号#:
05750
05751
产品名:
NeuroCult™ NS-A 基础培养基(人)
NeuroCult™ NS-A 扩增试剂盒(人)
文献
Feng Y et al. (SEP 2010)
Progress in biophysics and molecular biology 103 1 148--56
Unique biomechanical interactions between myeloma cells and bone marrow stroma cells.
We observed that BMSCs (bone marrow stromal cells) from myeloma patients (myeloma BMSCs) were significantly stiffer than control BMSCs using a cytocompression device. The stiffness of myeloma BMSCs and control BMSCs was further increased upon priming by myeloma cells. Additionally,myeloma cells became stiffer when primed by myeloma BMSCs. The focal adhesion kinase activity of myeloma cells was increased when cells were on stiffer collagen gels and on myeloma BMSCs. This change in myeloma stiffness is associated with increased colony formation of myeloma cells and FAK activation when co-cultured with stiffer myeloma BMSCs or stiffer collagen. Additionally,stem cells of RPMI8226 cells became stiffer after priming by myeloma BMSCs,with concomitant increases of stem cell colony formation. These results suggest the presence of a mechanotransduction loop between myeloma cells and myeloma BMSCs to increase the stiffness of both types of cells via FAK activation. The increase of stiffness may in turn support the growth of myeloma cells and myeloma stem cells.
View Publication
Mesenchymal stem cells can be differentiated into endothelial cells in vitro.
Human bone marrow-derived mesenchymal stem cells (MSCs) have the potential to differentiate into mesenchymal tissues like osteocytes,chondrocytes,and adipocytes in vivo and in vitro. The aim of this study was to investigate the in vitro differentiation of MSCs into cells of the endothelial lineage. MSCs were generated out of mononuclear bone marrow cells from healthy donors separated by density gradient centrifugation. Cells were characterized by flow cytometry using a panel of monoclonal antibodies and were tested for their potential to differentiate along different mesenchymal lineages. Isolated MSCs were positive for the markers CD105,CD73,CD166,CD90,and CD44 and negative for typical hematopoietic and endothelial markers. They were able to differentiate into adipocytes and osteocytes after cultivation in respective media. Differentiation into endothelial-like cells was induced by cultivation of confluent cells in the presence of 2% fetal calf serum and 50 ng/ml vascular endothelial growth factor. Laser scanning cytometry analysis of the confluent cells in situ showed a strong increase of expression of endothelial-specific markers like KDR and FLT-1,and immunofluorescence analysis showed typical expression of the von Willebrand factor. The functional behavior of the differentiated cells was tested with an in vitro angiogenesis test kit where cells formed characteristic capillary-like structures. We could show the differentiation of expanded adult human MSCs into cells with phenotypic and functional features of endothelial cells. These predifferentiated cells provide new options for engineering of artificial tissues based on autologous MSCs and vascularized engineered tissues.
View Publication
产品类型:
产品号#:
05401
产品名:
MesenCult™ MSC 基础培养基(人)
文献
Modlich U et al. (OCT 2006)
Blood 108 8 2545--53
Cell-culture assays reveal the importance of retroviral vector design for insertional genotoxicity.
Retroviral vectors with long terminal repeats (LTRs),which contain strong enhancer/promoter sequences at both ends of their genome,are widely used for stable gene transfer into hematopoietic cells. However,recent clinical data and mouse models point to insertional activation of cellular proto-oncogenes as a dose-limiting side effect of retroviral gene delivery that potentially induces leukemia. Self-inactivating (SIN) retroviral vectors do not contain the terminal repetition of the enhancer/promoter,theoretically attenuating the interaction with neighboring cellular genes. With a new assay based on in vitro expansion of primary murine hematopoietic cells and selection in limiting dilution,we showed that SIN vectors using a strong internal retroviral enhancer/promoter may also transform cells by insertional mutagenesis. Most transformed clones,including those obtained after dose escalation of SIN vectors,showed insertions upstream of the third exon of Evi1 and in reverse orientation to its transcriptional orientation. Normalizing for the vector copy number,we found the transforming capacity of SIN vectors to be significantly reduced when compared with corresponding LTR vectors. Additional modifications of SIN vectors may further increase safety. Improved cell-culture assays will likely play an important role in the evaluation of insertional mutagenesis.
View Publication
产品类型:
产品号#:
28600
产品名:
L-Calc™有限稀释软件
文献
Li H et al. (MAY 2007)
The Journal of clinical investigation 117 5 1314--23
Ewing sarcoma gene EWS is essential for meiosis and B lymphocyte development.
Ewing sarcoma gene EWS encodes a putative RNA-binding protein with proposed roles in transcription and splicing,but its physiological role in vivo remains undefined. Here,we have generated Ews-deficient mice and demonstrated that EWS is required for the completion of B cell development and meiosis. Analysis of Ews(-/-) lymphocytes revealed a cell-autonomous defect in precursor B lymphocyte (pre-B lymphocyte) development. During meiosis,Ews-null spermatocytes were deficient in XY bivalent formation and showed reduced meiotic recombination,resulting in massive apoptosis and complete arrest in gamete maturation. Inactivation of Ews in mouse embryonic fibroblasts resulted in premature cellular senescence,and the mutant animals showed hypersensitivity to ionizing radiation. Finally,we showed that EWS interacts with lamin A/C and that loss of EWS results in a reduced lamin A/C expression. Our findings reveal essential functions for EWS in pre-B cell development and meiosis,with proposed roles in DNA pairing and recombination/repair mechanisms. Furthermore,we demonstrate a novel role of EWS in cellular senescence,possibly through its interaction and modulation of lamin A/C.
View Publication
产品类型:
产品号#:
03534
03630
产品名:
MethoCult™GF M3534
MethoCult™M3630
文献
Barbaric I et al. (JUL 2011)
Journal of biomolecular screening 16 6 603--17
High-content screening for chemical modulators of embryonal carcinoma cell differentiation and survival.
Disentangling the complex interactions that govern stem cell fate choices of self-renewal,differentiation,or death presents a formidable challenge. Image-based phenotype-driven screening meets this challenge by providing means for rapid testing of many small molecules simultaneously. Pluripotent embryonal carcinoma (EC) cells offer a convenient substitute for embryonic stem (ES) cells in such screens because they are simpler to maintain and control. The authors developed an image-based screening assay to identify compounds that affect survival or differentiation of the human EC stem cell line NTERA2 by measuring the effect on cell number and the proportion of cells expressing a pluripotency-associated marker SSEA3. A pilot screen of 80 kinase inhibitors identified several compounds that improved cell survival or induced differentiation. The survival compounds Y-27632,HA-1077,and H-8 all strongly inhibit the kinases ROCK and PRK2,highlighting the important role of these kinases in EC cell survival. Two molecules,GF109203x and rottlerin,induced EC differentiation. The effects of rottlerin were also investigated in human ES cells. Rottlerin inhibited the self-renewal ability of ES cells,caused the cell cycle arrest,and repressed the expression of pluripotency-associated genes.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Aflaki E et al. (JUN 2014)
Science translational medicine 6 240 240ra73
Macrophage models of Gaucher disease for evaluating disease pathogenesis and candidate drugs.
Gaucher disease is caused by an inherited deficiency of glucocerebrosidase that manifests with storage of glycolipids in lysosomes,particularly in macrophages. Available cell lines modeling Gaucher disease do not demonstrate lysosomal storage of glycolipids; therefore,we set out to develop two macrophage models of Gaucher disease that exhibit appropriate substrate accumulation. We used these cellular models both to investigate altered macrophage biology in Gaucher disease and to evaluate candidate drugs for its treatment. We generated and characterized monocyte-derived macrophages from 20 patients carrying different Gaucher disease mutations. In addition,we created induced pluripotent stem cell (iPSC)-derived macrophages from five fibroblast lines taken from patients with type 1 or type 2 Gaucher disease. Macrophages derived from patient monocytes or iPSCs showed reduced glucocerebrosidase activity and increased storage of glucocerebroside and glucosylsphingosine in lysosomes. These macrophages showed efficient phagocytosis of bacteria but reduced production of intracellular reactive oxygen species and impaired chemotaxis. The disease phenotype was reversed with a noninhibitory small-molecule chaperone drug that enhanced glucocerebrosidase activity in the macrophages,reduced glycolipid storage,and normalized chemotaxis and production of reactive oxygen species. Macrophages differentiated from patient monocytes or patient-derived iPSCs provide cellular models that can be used to investigate disease pathogenesis and facilitate drug development.
View Publication
产品类型:
产品号#:
19059
19059RF
85850
85857
产品名:
EasySep™人单核细胞富集试剂盒
RoboSep™ 人单核细胞富集试剂盒含滤芯吸头
mTeSR™1
mTeSR™1
文献
Jia Y-Y et al. (SEP 2016)
Cytometry. Part A : the journal of the International Society for Analytical Cytology 89 9 844--851
Sorting of chromosomes on FACSAria(TM) SORP for the preparation of painting probes.
High purity chromosome sorting can be performed on instruments such as MoFlo MLS and BD influx,which are stream-in-air sorters equipped with water-cooled high power lasers. The FACSAria is a true fixed alignment,low laser powered instrument with a quartz flow cell gel-coupled to the collection optics. However,whether high purity mouse and human chromosomes can be obtained by sorting on the BD FACSAria(TM) Special Order Research Product (FACSAria SORP) remains to be determined. Here,we report that the high resolution flow karyotype of mouse lymphocytes and normal male human peripheral blood mononuclear cells (hPBMCs) can be obtained on the FACSAria SORP using laser power settings of 50 mW for 355 nm and 20 mW for 444 nm excitation. Furthermore,the use of Fluorescence in situ hybridization (FISH) confirmed that chromosome paints prepared from the sorted chromosomes demonstrated high purity and signal specificity. Notably,human chromosome 12 was separated from the chromosome 9-12 cluster in the flow karyotype,and its identity was confirmed using FISH in trisomy 12 human ES cell lines B2-C7 and B2-B8. In addition,multicolor FISH (mFISH) with human chromosome painting probes to 13,18,21,and sex chromosomes X and Y showed high signal specificity in hPBMCs. Taken together,our findings demonstrated that high resolution flow karyotype can be obtained using FACSAria SORP. Moreover,a FISH analysis confirmed high purity of the sorted chromosomes. Additionally,in contrast to centromeric satellite probes,chromosome painting probes with high specificity are more suitable for detection of chromosome aberrations,such as deletions and translocations,in prenatal diagnosis. textcopyright 2016 International Society for Advancement of Cytometry.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Gray NS et al. (JUL 1998)
Science (New York,N.Y.) 281 5376 533--8
Exploiting chemical libraries, structure, and genomics in the search for kinase inhibitors.
Selective protein kinase inhibitors were developed on the basis of the unexpected binding mode of 2,6,9-trisubstituted purines to the adenosine triphosphate-binding site of the human cyclin-dependent kinase 2 (CDK2). By iterating chemical library synthesis and biological screening,potent inhibitors of the human CDK2-cyclin A kinase complex and of Saccharomyces cerevisiae Cdc28p were identified. The structural basis for the binding affinity and selectivity was determined by analysis of a three-dimensional crystal structure of a CDK2-inhibitor complex. The cellular effects of these compounds were characterized in mammalian cells and yeast. In the latter case the effects were characterized on a genome-wide scale by monitoring changes in messenger RNA levels in treated cells with high-density oligonucleotide probe arrays. Purine libraries could provide useful tools for analyzing a variety of signaling and regulatory pathways and may lead to the development of new therapeutics.
View Publication
产品类型:
产品号#:
产品名:
文献
H. Shen et al. (dec 2022)
Journal of orthopaedic research : official publication of the Orthopaedic Research Society 40 12 2754--2762
The use of connective tissue growth factor mimics for flexor tendon repair.
Intrasynovial flexor tendon lacerations of the hand are clinically problematic,typically requiring operative repair and extensive rehabilitation. The small-molecule connective tissue growth factor (CTGF) mimics,oxotremorine M (Oxo-M) and 4-PPBP maleate (4-PPBP),have been shown to improve tendon healing in small animal models by stimulating the expansion and differentiation of perivascular CD146+ cells. To enhance intrasynovial flexor tendon healing,small-molecule CTGF mimics were delivered to repaired canine flexor tendons via porous sutures. In vitro studies demonstrated that Oxo-M and 4-PPBP retained their bioactivity and could be released from porous sutures in a sustained manner. However,in vivo delivery of the CTGF mimics did not improve intrasynovial tendon healing. Histologic analyses and expression of tenogenic,extracellular matrix,inflammation,and remodeling genes showed similar outcomes in treated and untreated repairs across two time points. Although in vitro experiments revealed that CTGF mimics stimulated robust responses in extrasynovial tendon cells,there was no response in intrasynovial tendon cells,explaining the lack of in vivo effects. The results of the current study indicate that therapeutic strategies for tendon repair must carefully consider the environment and cellular makeup of the particular tendon for improving the healing response.
View Publication