Fallon P et al. (JUL 2003)
British journal of haematology 122 1 99--108
Mobilized peripheral blood SSCloALDHbr cells have the phenotypic and functional properties of primitive haematopoietic cells and their number correlates with engraftment following autologous transplantation.
We have developed an approach for identifying primitive mobilized peripheral blood cells (PBSC) that express high levels of aldehyde dehydrogenase (ALDH). PBSC were stained with a fluorescent ALDH substrate,termed BODIPY trade mark -aminoacetaldehyde (BAAA),and then analysed using flow cytometry. A population of cells with a low side scatter (SSC) and a high level of BAAA staining,termed the SSCloALDHbr population,was readily discriminated and comprised a mean of 3 +/- 5% of leukapheresis samples. A mean of 73 +/- 11% of the SSCloALDHbr population expressed CD34 and 56 +/- 25% of all the mobilized CD34+ cells resided within the SSCloALDHbr population. The SSCloALDHbr population was largely depleted of cells with mature phenotypes and enriched for cells with immature phenotypes. Sorted SSCloALDHbr and SSCloALDHbr CD34+ PBSC were enriched for progenitors with the ability to (1) generate colony-forming units (CFU) and long-term culture (LTC)-derived CFU,(2) expand in primary and secondary LTC,and (3) generate multiple cell lineages. In 21 cancer patients who had undergone autologous PBSC transplantation,the number of infused SSCloALDHbr cells/kg highly correlated with the time to neutrophil and platelet engraftment (P textless 0.015 and P textless 0.003 respectively). In summary,peripheral blood SSCloALDHbr cells have the phenotypic and functional properties of primitive haematopoietic cells and their number correlates with engraftment following autologous transplantation.
View Publication
产品类型:
产品号#:
01700
01705
01701
01702
产品名:
ALDEFLUOR™工具
ALDEFLUOR™DEAB试剂
ALDEFLUOR™测定缓冲液
文献
Fang B et al. (APR 2005)
Blood 105 7 2733--40
Identification of human chronic myelogenous leukemia progenitor cells with hemangioblastic characteristics.
Overwhelming evidence from leukemia research has shown that the clonal population of neoplastic cells exhibits marked heterogeneity with respect to proliferation and differentiation. There are rare stem cells within the leukemic population that possess extensive proliferation and self-renewal capacity not found in the majority of the leukemic cells. These leukemic stem cells are necessary and sufficient to maintain the leukemia. Interestingly,the BCR/ABL fusion gene,which is present in chronic myelogenous leukemia (CML),was also detected in the endothelial cells of patients with CML,suggesting that CML might originate from hemangioblastic progenitor cells that can give rise to both blood cells and endothelial cells. Here we isolated fetal liver kinase-1-positive (Flk1+) cells carrying the BCR/ABL fusion gene from the bone marrow of 17 Philadelphia chromosome-positive (Ph+) patients with CML and found that these cells could differentiate into malignant blood cells and phenotypically defined endothelial cells at the single-cell level. These findings provide direct evidence for the first time that rearrangement of the BCR/ABL gene might happen at or even before the level of hemangioblastic progenitor cells,thus resulting in detection of the BCR/ABL fusion gene in both blood and endothelial cells.
View Publication
产品类型:
产品号#:
04435
04445
产品名:
MethoCult™H4435富集
MethoCult™H4435富集
文献
Al-Ali H et al. (MAY 2013)
ACS chemical biology 25 5 1027--36
A ROCK inhibitor permits survival of dissociated human embryonic stem cells.
Poor survival of human embryonic stem (hES) cells after cell dissociation is an obstacle to research,hindering manipulations such as subcloning. Here we show that application of a selective Rho-associated kinase (ROCK) inhibitor,Y-27632,to hES cells markedly diminishes dissociation-induced apoptosis,increases cloning efficiency (from approximately 1% to approximately 27%) and facilitates subcloning after gene transfer. Furthermore,dissociated hES cells treated with Y-27632 are protected from apoptosis even in serum-free suspension (SFEB) culture and form floating aggregates. We demonstrate that the protective ability of Y-27632 enables SFEB-cultured hES cells to survive and differentiate into Bf1(+) cortical and basal telencephalic progenitors,as do SFEB-cultured mouse ES cells.
View Publication
Scalable generation of universal platelets from human induced pluripotent stem cells
Human induced pluripotent stem cells (iPSCs) provide a potentially replenishable source for the production of transfusable platelets. Here,we describe a method to generate megakaryocytes (MKs) and functional platelets from iPSCs in a scalable manner under serum/feeder-free conditions. The method also permits the cryopreservation of MK progenitors,enabling a rapid surge" capacity when large numbers of platelets are needed. Ultrastructural/morphological analyses show no major differences between iPSC platelets and human blood platelets. iPSC platelets form aggregates�
View Publication
产品类型:
产品号#:
02696
07923
07930
07931
07940
07955
07959
85850
85857
05270
05275
产品名:
StemSpan™巨核细胞扩增补充(100X)
Dispase (1 U/mL)
CryoStor® CS10
CryoStor® CS10
CryoStor® CS10
CryoStor® CS10
CryoStor® CS10
mTeSR™1
mTeSR™1
STEMdiff™ APEL™2 培养基
STEMdiff™ APEL™2 培养基
文献
Lambert AW et al. (JAN 2016)
Molecular cancer research : MCR 14 1 103--113
Tumor Cell-Derived Periostin Regulates Cytokines That Maintain Breast Cancer Stem Cells.
UNLABELLED Basal-like breast cancer (BLBC) is an aggressive subtype of breast cancer which is often enriched with cancer stem cells (CSC),but the underlying molecular basis for this connection remains elusive. We hypothesized that BLBC cells are able to establish a niche permissive to the maintenance of CSCs and found that tumor cell-derived periostin (POSTN),a component of the extracellular matrix,as well as a corresponding cognate receptor,integrin $$(v)$$(3),are highly expressed in a subset of BLBC cell lines as well as in CSC-enriched populations. Furthermore,we demonstrated that an intact periostin-integrin $$3 signaling axis is required for the maintenance of breast CSCs. POSTN activates the ERK signaling pathway and regulates NF-$$B-mediated transcription of key cytokines,namely IL6 and IL8,which in turn control downstream activation of STAT3. In summary,these findings suggest that BLBC cells have an innate ability to establish a microenvironmental niche supportive of CSCs. IMPLICATIONS The findings reported here indicate that POSTN produced by CSCs acts to reinforce the stem cell state through the activation of integrin receptors and the production of key cytokines.
View Publication
产品类型:
产品号#:
05620
产品名:
MammoCult™ 人源培养基套装
文献
Koh S and Piedrahita JA ( 2015)
1330 69--78
Generation of induced pluripotent stem cells (iPSCs) from adult canine fibroblasts
Induced pluripotent stem cells hold great potential in regenerative medicine as it enables to generate pluripotent stem cells from any available cell types. Ectopic expression of four transcription factors (Oct4,Sox2,Klf4,and c-Myc) can reprogram fibroblasts directly to pluripotency as shown in multiple species. Here,we describe detailed protocols for generation of iPSCs from adult canine fibroblasts. Robust canine iPSCs will provide powerful tools not only to study human diseases,but also for the development of therapeutic approaches.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Agrawal P et al. (APR 2016)
ACS applied materials & interfaces 8 14 8870--8874
Fast, Efficient, and Gentle Transfection of Human Adherent Cells in Suspension
We demonstrate a highly efficient method for gene delivery into clinically relevant human cell types,such as induced pluripotent stem cells (iPSCs) and fibroblasts,reducing the protocol time by one full day. To preserve cell physiology during gene transfer,we designed a microfluidic strategy,which facilitates significant gene delivery in a short transfection time (textless1 min) for several human cell types. This fast,optimized and generally applicable cell transfection method can be used for rapid screening of different delivery systems and has significant potential for high-throughput cell therapy applications.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Fernandes AM et al. (JAN 2010)
Cell Transplantation 19 5 509--23
Worldwide survey of published procedures to culture human embryonic stem cells
Since their derivation 11 years ago,human embryonic stem (hES) cells have become a powerful tool in both basic biomedical research and developmental biology. Their capacity for self-renewal and differentiation into any tissue type has also brought interest from fields such as cell therapy and drug screening. We conducted an extensive analysis of 750 papers (51% of the total published about hES cells between 1998 and 2008) to present a spectrum of hES cell research including culture protocols developed worldwide. This review may stimulate discussions about the importance of having unvarying methods to culture hES cells,in order to facilitate comparisons among data obtained by research groups elsewhere,especially concerning preclinical studies. Moreover,the description of the most widely used cell lines,reagents,and procedures adopted internationally will help newcomers on deciding the best strategies for starting their own studies. Finally,the results will contribute with the efforts of stem cell researchers on comparing the performance of different aspects related to hES cell culture methods.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Duan X et al. (JAN 2011)
Journal of cellular physiology 226 1 150--7
Application of induced pluripotent stem (iPS) cells in periodontal tissue regeneration
Tissue engineering provides a new paradigm for periodontal tissue regeneration in which proper stem cells and effective cellular factors are very important. The objective of this study was,for the first time,to investigate the capabilities and advantages of periodontal tissue regeneration using induced pluripotent stem (iPS) cells and enamel matrix derivatives (EMD). In this study the effect of EMD gel on iPS cells in vitro was first determined,and then tissue engineering technique was performed to repair periodontal defects in three groups: silk scaffold only; silk scaffold + EMD; and silk scaffold + EMD + iPS cells. EMD greatly enhanced the mRNA expression of Runx2 but inhibited the mRNA expression of OC and mineralization nodule formation in vitro. Transplantation of iPS cells showed higher expression levels of OC,Osx,and Runx2 genes,both 12 and 24 days postsurgery. At 24 days postsurgery in the iPS cell group,histological analysis showed much more new alveolar bone and cementum formation with regenerated periodontal ligament between them. The results showed the commitment role that EMD contributes in mesenchymal progenitors to early cells in the osteogenic lineage. iPS cells combined with EMD provide a valuable tool for periodontal tissue engineering,by promoting the formation of new cementum,alveolar bone,and normal periodontal ligament.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Varum S et al. (JUN 2011)
PLoS ONE 6 6 e20914
Energy metabolism in human pluripotent stem cells and their differentiated counterparts.
BACKGROUND: Human pluripotent stem cells have the ability to generate all cell types present in the adult organism,therefore harboring great potential for the in vitro study of differentiation and for the development of cell-based therapies. Nonetheless their use may prove challenging as incomplete differentiation of these cells might lead to tumoregenicity. Interestingly,many cancer types have been reported to display metabolic modifications with features that might be similar to stem cells. Understanding the metabolic properties of human pluripotent stem cells when compared to their differentiated counterparts can thus be of crucial importance. Furthermore recent data has stressed distinct features of different human pluripotent cells lines,namely when comparing embryo-derived human embryonic stem cells (hESCs) and induced pluripotent stem cells (IPSCs) reprogrammed from somatic cells.backslashnbackslashnMETHODOLOGY/PRINCIPAL FINDINGS: We compared the energy metabolism of hESCs,IPSCs,and their somatic counterparts. Focusing on mitochondria,we tracked organelle localization and morphology. Furthermore we performed gene expression analysis of several pathways related to the glucose metabolism,including glycolysis,the pentose phosphate pathway and the tricarboxylic acid (TCA) cycle. In addition we determined oxygen consumption rates (OCR) using a metabolic extracellular flux analyzer,as well as total intracellular ATP levels by high performance liquid chromatography (HPLC). Finally we explored the expression of key proteins involved in the regulation of glucose metabolism.backslashnbackslashnCONCLUSIONS/FINDINGS: Our results demonstrate that,although the metabolic signature of IPSCs is not identical to that of hESCs,nonetheless they cluster with hESCs rather than with their somatic counterparts. ATP levels,lactate production and OCR revealed that human pluripotent cells rely mostly on glycolysis to meet their energy demands. Furthermore,our work points to some of the strategies which human pluripotent stem cells may use to maintain high glycolytic rates,such as high levels of hexokinase II and inactive pyruvate dehydrogenase (PDH).
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Downes A et al. (OCT 2011)
Journal of Raman Spectroscopy 42 10 1864--1870
Raman spectroscopy and CARS microscopy of stem cells and their derivatives
The characterisation of stem cells is of vital importance to regenerative medicine. Failure to separate out all stem cells from differentiated cells before therapies can result in teratomas - tumours of multiple cell types. Typically,characterisation is performed in a destructive manner with fluorescent assays. A truly non-invasive method of characterisation would be a major breakthrough in stem cell-based therapies. Raman spectroscopy has revealed that DNA and RNA levels drop when a stem cell differentiates into other cell types,which we link to a change in the relative sizes of the nucleus and cytoplasm. We also used Raman spectroscopy to investigate the biochemistry within an early embryo,or blastocyst,which differs greatly from colonies of embryonic stem cells. Certain cell types that differentiate from stem cells can be identified by directly imaging the biochemistry with CARS microscopy; examples presented are hydroxyapatite - a precursor to bone,and lipids in adipocytes.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Xu G et al. (MAY 2013)
Neuroscience 238 195--208
Functional analysis of platelet-derived growth factor receptor-β in neural stem/progenitor cells
Activation of neural stem/progenitor cells (NSPCs) is a potential therapeutic strategy of neurological disorders. In this study,NSPCs of subventricular zone were isolated and cultured from platelet-derived growth factor-β-receptor-knockout (PDGFR-β(-/-)) mice of postnatal day 1 (P1) and P28,and the roles of PDGFR-β were examined in these cells. In PDGFR-β-preserving control NSPCs,stem cell activities,such as numbers and diameters of secondary neurospheres,cell proliferation and survival rates,were significantly higher in P1 NSPCs than those in P28 NSPCs. In PDGFR-β(-/-) NSPCs,most of these parameters were decreased as compared with age-matched controls. Among them,the decrease of secondary neurosphere formation was most striking in P1 and P28 PDGFR-β(-/-) NSPCs and in P28 control NSPCs as compared with P1 control NSPCs. PCR-array and following quantitative real-time PCR (qRT-PCR) analyses demonstrated that expressions of fibroblast growth factor-2 (FGF2) and exons IV-IX of brain-derived neurotrophic factor (BDNF) were decreased,and noggin was increased in P1 PDGFR-β(-/-) as compared with P1 controls. Addition of BDNF rescued the number and diameter of secondary neurospheres in P1 PDGFR-β(-/-) NSPCs to similar levels as controls. The expressions of PDGFs and PDGFRs in control NSPCs were increased along with the differentiation-induction,where phosphorylated PDGFR-β was co-localized with neuronal and astrocyte differentiation markers. In controls,the neuronal differentiation was decreased,and the glial differentiation was increased from P1 to P28 NSPCs. Compared with P1 controls,neuronal differentiation was reduced in P1 PDGFR-β(-/-) NSPCs,whereas glial differentiation was comparable between the two genotypes. These results suggest that PDGFR-β signaling is important for the self-renewal and multipotency of NSPCs,particularly in neonatal NSPCs. BDNF,FGF2,and noggin may be involved in the effects of PDGFR-β signaling in these cells. Accordingly,the activation of PDGFR-β in NSPCs may be a novel therapeutic strategy of neurological diseases.
View Publication