P. Bank'o et al. (may 2019)
Journal of hematology oncology 12 1 48
Technologies for circulating tumor cell separation from whole blood.
The importance of early cancer diagnosis and improved cancer therapy has been clear for years and has initiated worldwide research towards new possibilities in the care strategy of patients with cancer using technological innovations. One of the key research fields involves the separation and detection of circulating tumor cells (CTC) because of their suggested important role in early cancer diagnosis and prognosis,namely,providing easy access by a liquid biopsy from blood to identify metastatic cells before clinically detectable metastasis occurs and to study the molecular and genetic profile of these metastatic cells. Provided the opportunity to further progress the development of technology for treating cancer,several CTC technologies have been proposed in recent years by various research groups and companies. Despite their potential role in cancer healthcare,CTC methods are currently mainly used for research purposes,and only a few methods have been accepted for clinical application because of the difficulties caused by CTC heterogeneity,CTC separation from the blood,and a lack of thorough clinical validation. Therefore,the standardization and clinical application of various developed CTC technologies remain important subsequent necessary steps. Because of their suggested future clinical benefits,we focus on describing technologies using whole blood samples without any pretreatment and discuss their advantages,use,and significance. Technologies using whole blood samples utilize size-based,immunoaffinity-based,and density-based methods or combinations of these methods as well as positive and negative enrichment during separation. Although current CTC technologies have not been truly implemented yet,they possess high potential as future clinical diagnostic techniques for the individualized therapy of patients with cancer. Thus,a detailed discussion of the clinical suitability of these new advanced technologies could help prepare clinicians for the future and can be a foundation for technologies that would be used to eliminate CTCs in vivo.
View Publication
产品类型:
产品号#:
19657
产品名:
EasySep™ Direct人CTC富集试剂盒
文献
Druker BJ (DEC 2008)
Blood 112 13 4808--17
Translation of the Philadelphia chromosome into therapy for CML.
Throughout its history,chronic myeloid leukemia (CML) has set precedents for cancer research and therapy. These range from the identification of the first specific chromosomal abnormality associated with cancer to the development of imatinib as a specific,targeted therapy for the disease. The successful development of imatinib as a therapeutic agent for CML can be attributed directly to decades of scientific discoveries. These discoveries determined that the BCR-ABL tyrosine kinase is the critical pathogenetic event in CML and an ideal target for therapy. This was confirmed in clinical trials of imatinib,with imatinib significantly improving the long-term survival of patients with CML. Continuing in this tradition of scientific discoveries leading to improved therapies,the understanding of resistance to imatinib has rapidly led to strategies to circumvent resistance. Continued studies of hematologic malignancies will allow this paradigm of targeting molecular pathogenetic events to be applied to many additional hematologic cancers.
View Publication
产品类型:
产品号#:
72532
产品名:
Imatinib (Mesylate)
文献
Xu L et al. (SEP 2010)
Stem cell reviews 6 3 398--404
The iPS technique provides hope for Parkinson's disease treatment.
More recently,reprogramming of somatic cells to an embryonic stem cell-like state presents a milestone in the realm of stem cells,making it possible to derive all cell types from any patients bearing specific genetic mutations. With the development of induced pluripotent stem (iPS) cells,we are now able to use the derivatives of iPS cells to study the mechanisms of disease and to perform drug screening and toxicology testing. In addition,differentiated iPS cells are now close to be used in clinical practice. Here we review the progress of iPS technique and the possible application in the area of Parkinson's disease treatment.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
文献
Murphy S et al. (APR 2010)
Current protocols in stem cell biology Chapter 1 Unit 1E.6
Amnion epithelial cell isolation and characterization for clinical use.
Human amnion epithelial cells (hAECs) are a heterologous population positive for stem cell markers; they display multilineage differentiation potential,differentiating into cells of the endoderm (liver,lung epithelium),mesoderm (bone,fat),and ectoderm (neural cells). They have a low immunogenic profile and possess potent immunosuppressive properties. Hence,hAECs may be a valuable source of cells for cell therapy. This unit describes an efficient and effective method of hAEC isolation,culture,and cryopreservation that is animal product-free and in accordance with current guidelines on preparation of cells for clinical use. Cells isolated using this method were characterized after 5 passages by analysis of karyotype,cell cycle distribution,and changes in telomere length. The differentiation potential of hAECs isolated using this animal product-free method was demonstrated by differentiation into lineages of the three primary germ layers and expression of lineage-specific markers analyzed by PCR,immunocytochemistry,and histology.
View Publication
产品类型:
产品号#:
07930
07931
07940
07955
07956
07959
07954
产品名:
CryoStor® CS10
CryoStor® CS10
CryoStor® CS10
CryoStor® CS10
CryoStor® CS10
文献
J. Drost et al. (FEB 2016)
Nature protocols 11 2 347--58
Organoid culture systems for prostate epithelial and cancer tissue.
This protocol describes a strategy for the generation of 3D prostate organoid cultures from healthy mouse and human prostate cells (either bulk or FACS-sorted single luminal and basal cells),metastatic prostate cancer lesions and circulating tumor cells. Organoids derived from healthy material contain the differentiated luminal and basal cell types,whereas organoids derived from prostate cancer tissue mimic the histology of the tumor. We explain how to establish these cultures in the fully defined serum-free conditioned medium that is required to sustain organoid growth. Starting with the plating of digested tissue material,full-grown organoids can usually be obtained in ∼2 weeks. The culture protocol we describe here is currently the only one that allows the growth of both the luminal and basal prostatic epithelial lineages,as well as the growth of advanced prostate cancers. Organoids established using this protocol can be used to study many different aspects of prostate biology,including homeostasis,tumorigenesis and drug discovery.
View Publication
产品类型:
产品号#:
15122
15162
产品名:
RosetteSep™人CD45去除抗体混合物
RosetteSep™人CD45去除抗体混合物
文献
Er JC et al. (FEB 2015)
Angewandte Chemie - International Edition 54 8 2442--2446
Neuo: A fluorescent chemical probe for live neuron labeling
To address existing limitations in live neuron imaging,we have developed NeuO,a novel cell-permeable fluorescent probe with an unprecedented ability to label and image live neurons selectively over other cells in the brain. NeuO enables robust live neuron imaging and isolation in vivo and in vitro across species; its versatility and ease of use sets the basis for its development in a myriad of neuronal targeting applications.
View Publication
产品类型:
产品号#:
01801
产品名:
NeuroFluor™NeuO
文献
Doran MR et al. (JUL 2010)
Biomaterials 31 19 5137--42
Defined high protein content surfaces for stem cell culture.
Unlocking the clinical potential of stem cell based therapies requires firstly elucidation of the biological mechanisms which direct stem cell fate decisions and thereafter,technical advances which allow these processes to be driven in a fully defined culture environment. Strategies for the generation of defined surfaces for human embryonic stem cell (hESC) and mesenchymal stem cell (MSC) culture remain in their infancy. In this paper we outline a simple,effective and efficient method for presenting proteins or peptides on an otherwise non-fouling Layer-by-Layer (LbL) self-assembled surface of hyaluronic acid (HA) and chitosan (CHI). We are able to generate a surface that has both good temporal stability and the ability to direct biological outcomes based on its defined surface composition. Surface functionalization is achieved through suspending the selected extracellular matrix (ECM) protein domain or extracted full-length protein in buffer containing a cross-linking agent (N-hydroxysulfosuccinimide/N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride) over the LbL HA-CHI surface and then allowing the solvent to evaporate overnight. This simple,but important step results in remarkable protein deposition efficiencies often exceeding 50%,whereas traditional cross-linking methods result in such poor deposition of non-collagenous proteins that a.) quantification of bound amounts of protein is outside the resolution of commonly utilized protein assays,and b.) these surfaces are both unable to support cell attachment and growth. The utility of the protein-modified HA-CHI surfaces is demonstrated through the identification of specific hESC attachment efficiencies and through directing MSC osteogenic outcomes on these fully defined surfaces. This simple and scalable method is shown to enable the development of defined stem cell culture conditions,as well as the elucidation of the fundamental biological processes necessary for the realization of stem cell based therapies.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Villa M et al. (NOV 2016)
The EMBO journal
Aryl hydrocarbon receptor is required for optimal B-cell proliferation.
The aryl hydrocarbon receptor (AhR),a transcription factor known for mediating xenobiotic toxicity,is expressed in B cells,which are known targets for environmental pollutants. However,it is unclear what the physiological functions of AhR in B cells are. We show here that expression of Ahr in B cells is up-regulated upon B-cell receptor (BCR) engagement and IL-4 treatment. Addition of a natural ligand of AhR,FICZ,induces AhR translocation to the nucleus and transcription of the AhR target gene Cyp1a1,showing that the AhR pathway is functional in B cells. AhR-deficient (Ahr(-/-)) B cells proliferate less than AhR-sufficient (Ahr(+/+)) cells following in vitro BCR stimulation and in vivo adoptive transfer models confirmed that Ahr(-/-) B cells are outcompeted by Ahr(+/+) cells. Transcriptome comparison of AhR-deficient and AhR-sufficient B cells identified cyclin O (Ccno),a direct target of AhR,as a top candidate affected by AhR deficiency.
View Publication
产品类型:
产品号#:
19854
19854RF
产品名:
EasySep™小鼠B细胞分选试剂盒
RoboSep™ 小鼠B细胞分选试剂盒
文献
Kiris E et al. (MAY 2011)
Stem cell research 6 3 195--205
Embryonic stem cell-derived motoneurons provide a highly sensitive cell culture model for botulinum neurotoxin studies, with implications for high-throughput drug discovery.
Botulinum neurotoxins (BoNTs) inhibit cholinergic synaptic transmission by specifically cleaving proteins that are crucial for neurotransmitter exocytosis. Due to the lethality of these toxins,there are elevated concerns regarding their possible use as bioterrorism agents. Moreover,their widespread use for cosmetic purposes,and as medical treatments,has increased the potential risk of accidental overdosing and environmental exposure. Hence,there is an urgent need to develop novel modalities to counter BoNT intoxication. Mammalian motoneurons are the main target of BoNTs; however,due to the difficulty and poor efficiency of the procedures required to isolate the cells,they are not suitable for high-throughput drug screening assays. Here,we explored the suitability of embryonic stem (ES) cell-derived motoneurons as a renewable,reproducible,and physiologically relevant system for BoNT studies. We found that the sensitivity of ES-derived motoneurons to BoNT/A intoxication is comparable to that of primary mouse spinal motoneurons. Additionally,we demonstrated that several BoNT/A inhibitors protected SNAP-25,the BoNT/A substrate,in the ES-derived motoneuron system. Furthermore,this system is compatible with immunofluorescence-based high-throughput studies. These data suggest that ES-derived motoneurons provide a highly sensitive system that is amenable to large-scale screenings to rapidly identify and evaluate the biological efficacies of novel therapeutics.
View Publication
产品类型:
产品号#:
产品名:
文献
Meng A et al. (DEC 2003)
Experimental hematology 31 12 1348--56
Ionizing radiation and busulfan inhibit murine bone marrow cell hematopoietic function via apoptosis-dependent and -independent mechanisms.
OBJECTIVE: Ionizing radiation (IR) and busulfan (BU) are commonly used as preconditioning regimens for bone marrow transplantation (BMT). We examined whether induction of apoptosis in murine bone marrow (BM) hematopoietic cells contributes to IR- and BU-induced suppression of their hematopoietic function. METHODS: The hematopoietic functions of hematopoietic stem cells (HSCs) and progenitors were analyzed by the cobblestone area-forming cell (CAFC) assay. Apoptosis was determined by measuring 3,3'-dihexyloxacarbocyanine iodide (DiCO6) uptake,annexin V staining,and/or sub-G(0/1) cells. Four cell types were studied: murine BM mononuclear cells (BM-MNCs),linage-negative hematopoietic cells (Lin-) cells),Lin- Scal+ c-kit+ cells,and Lin- Scal- c-kit+ cells by flow cytometry. RESULTS: Exposure of BM-MNCs to IR (4 Gy) or incubation of the cells with BU (30 microM) resulted in a significant reduction in CAFC frequency (ptextless0.001). The survival fractions of various day-types of CAFC for the irradiated cells were less than 10%,while that for BU-treated cells was 71.3% on day 7 and progressively declined to 5.3% on day 35. Interestingly,IR significantly induced apoptosis in BM-MNCs,Lin- cells,HSCs,and progenitors,whereas BU failed to increase apoptosis in these cells. In addition,preincubation of BM-MNCs with z-Val-Ala-Asp (OCH3)-fluoromethylketone,methyl ester (z-VAD) attenuated IR-induced reduction in CAFC but not that induced by BU. CONCLUSION: IR and BU differentially suppress the hematopoietic function of HSCs and progenitors by fundamentally different mechanisms. IR inhibits the function primarily by the induction of HSC and progenitor apoptosis. In contrast,BU suppresses HSC and progenitor function via an apoptosis-independent mechanism.
View Publication
产品类型:
产品号#:
03534
产品名:
MethoCult™GF M3534
文献
Lam BS et al. (JAN 2011)
Blood 117 4 1167--75
Pharmacologic modulation of the calcium-sensing receptor enhances hematopoietic stem cell lodgment in the adult bone marrow.
The ability of hematopoietic stem cells (HSCs) to undergo self-renewal is partly regulated by external signals originating from the stem cell niche. Our previous studies with HSCs obtained from fetal liver of mice deficient for the calcium-sensing receptor (CaR) have shown the crucial role of this receptor in HSC lodgment and engraftment in the bone marrow (BM) endosteal niche. Using a CaR agonist,Cinacalcet,we assessed the effects of stimulating the CaR on the function of murine HSCs. Our results show that CaR stimulation increases primitive hematopoietic cell activity in vitro,including growth in stromal cell cocultures,adhesion to extracellular matrix molecules such as collagen I and fibronectin,and migration toward the chemotactic stimulus,stromal cell-derived factor 1α. Receptor stimulation also led to augmented in vivo homing,CXCR4-mediated lodgment at the endosteal niche,and engraftment capabilities. These mechanisms by which stimulating the CaR dictates preferential localization of HSCs in the BM endosteal niche provide additional insights into the fundamental interrelationship between the stem cell and its niche. These studies also have implications in the area of clinical stem cell transplantation,where ex vivo modulation of the CaR may be envisioned as a strategy to enhance HSC engraftment in the BM.
View Publication
产品类型:
产品号#:
03434
03444
产品名:
MethoCult™GF M3434
MethoCult™GF M3434
文献
Maxwell CR et al. ( 2004)
Neuroscience 129 1 101--107
Phosphodiesterase inhibitors: a novel mechanism for receptor-independent antipsychotic medications.
OVERVIEW: All current antipsychotic medications work by binding to Gi-coupled dopamine (DA) D2 receptors. Such medications are thought to affect cellular function primarily by decreasing DA-mediated regulation of intracellular cyclic adenosine monophosphate (cAMP).However,several studies indicate that cAMP signal transduction abnormalities in schizophrenia may not be limited to D2-containing cells. The current study examines the potential of using non-receptor-based agents that modify intracellular signal transduction as potential antipsychotic medications. METHODS: The indirect DA agonist amphetamine has been used to model the auditory sensory processing deficits in schizophrenia. Such pharmacologically induced abnormalities are reversed by current antipsychotic treatments. This study examines the ability of the phosphodiesterase-4 inhibitor,rolipram,to reverse amphetamine-induced abnormalities in auditory-evoked potentials that are characteristic of schizophrenia. RESULTS: Rolipram reverses amphetamine-induced reductions in auditory-evoked potentials. CONCLUSION: This finding could lead to novel approaches to receptor-independent treatments for schizophrenia.
View Publication