Mackay AM et al. (JAN 1998)
Tissue engineering 4 4 415--28
Chondrogenic differentiation of cultured human mesenchymal stem cells from marrow.
In the adult human,mesenchymal stem cells (MSCs) resident in bone marrow retain the capacity to proliferate and differentiate along multiple connective tissue lineages,including cartilage. In this study,culture-expanded human MSCs (hMSCs) of 60 human donors were induced to express the morphology and gene products of chondrocytes. Chondrogenesis was induced by culturing hMSCs in micromass pellets in the presence of a defined medium that included 100 nM dexamethasone and 10 ng/ml transforming growth factor-beta(3) (TGF-beta(3)). Within 14 days,cells secreted an extracellular matrix incorporating type II collagen,aggrecan,and anionic proteoglycans. hMSCs could be further differentiated to the hypertrophic state by the addition of 50 nM thyroxine,the withdrawal of TGF-beta(3),and the reduction of dexamethasone concentration to 1 nM. Increased understanding of the induction of chondrogenic differentiation should lead to further progress in defining the mechanisms responsible for the generation of cartilaginous tissues,their maintenance,and their regeneration.
View Publication
产品类型:
产品号#:
72092
产品名:
地塞米松(Dexamethasone)
文献
K. E. Neu et al. (NOV 2018)
The Journal of clinical investigation
Spec-seq unveils transcriptional subpopulations of antibody-secreting cells following influenza vaccination.
Vaccines are among the most effective public health tools for combating certain infectious diseases such as influenza. The role of the humoral immune system in vaccine-induced protection is widely appreciated; however,our understanding of how antibody specificities relate to B cell function remains limited due to the complexity of polyclonal antibody responses. To address this,we developed the Spec-seq framework,which allows for simultaneous monoclonal antibody (mAb) characterization and transcriptional profiling from the same single cell. Here,we present the first application of the Spec-seq framework,which we applied to human plasmablasts after influenza vaccination in order to characterize transcriptional differences governed by B cell receptor (BCR) isotype and vaccine reactivity. Our analysis did not find evidence of long-term transcriptional specialization between plasmablasts of different isotypes. However,we did find enhanced transcriptional similarity between clonally related B cells,as well as distinct transcriptional signatures ascribed by BCR vaccine recognition. These data suggest IgG and IgA vaccine-positive plasmablasts are largely similar,whereas IgA vaccine-negative cells appear to be transcriptionally distinct from conventional,terminally differentiated,antigen-induced peripheral blood plasmablasts.
View Publication
产品类型:
产品号#:
15024
15064
产品名:
RosetteSep™人B细胞富集抗体混合物
RosetteSep™人B细胞富集抗体混合物
文献
J. E. Oh et al. (jul 2019)
Nature 571 7763 122--126
Migrant memory B cells secrete luminal antibody in the vagina.
Antibodies secreted into mucosal barriers serve to protect the host from a variety of pathogens,and are the basis for successful vaccines1. In type I mucosa (such as the intestinal tract),dimeric IgA secreted by local plasma cells is transported through polymeric immunoglobulin receptors2 and mediates robust protection against viruses3,4. However,owing to the paucity of polymeric immunoglobulin receptors and plasma cells,how and whether antibodies are delivered to the type II mucosa represented by the lumen of the lower female reproductive tract remains unclear. Here,using genital herpes infection in mice,we show that primary infection does not establish plasma cells in the lamina propria of the female reproductive tract. Instead,upon secondary challenge with herpes simplex virus 2,circulating memory B cells that enter the female reproductive tract serve as the source of rapid and robust antibody secretion into the lumen of this tract. CD4 tissue-resident memory T cells secrete interferon-gamma,which induces expression of chemokines,including CXCL9 and CXCL10. Circulating memory B cells are recruited to the vaginal mucosa in a CXCR3-dependent manner,and secrete virus-specific IgG2b,IgG2c and IgA into the lumen. These results reveal that circulating memory B cells act as a rapidly inducible source of mucosal antibodies in the female reproductive tract.
View Publication
产品类型:
产品号#:
19854
19854RF
产品名:
EasySep™小鼠B细胞分选试剂盒
RoboSep™ 小鼠B细胞分选试剂盒
文献
A. M\'endez-Mancilla et al. (feb 2022)
Cell chemical biology 29 2 321--327.e4
Chemically modified guide RNAs enhance CRISPR-Cas13 knockdown in human cells.
RNA-targeting CRISPR-Cas13 proteins have recently emerged as a powerful platform to modulate gene expression outcomes. However,protein and CRISPR RNA (crRNA) delivery in human cells can be challenging with rapid crRNA degradation yielding transient knockdown. Here we compare several chemical RNA modifications at different positions to identify synthetic crRNAs that improve RNA targeting efficiency and half-life in human cells. We show that co-delivery of modified crRNAs and recombinant Cas13 enzyme in ribonucleoprotein (RNP) complexes can alter gene expression in primary CD4+ and CD8+ T cells. This system represents a robust and efficient method to modulate transcripts without genetic manipulation.
View Publication
产品类型:
产品号#:
17853
17952
产品名:
EasySep™人CD8正选试剂盒 II
EasySep™人CD4+ T细胞分选试剂盒
文献
Kang HS et al. (DEC 2015)
Journal of Korean medical science 30 12 1764--76
Advanced Properties of Urine Derived Stem Cells Compared to Adipose Tissue Derived Stem Cells in Terms of Cell Proliferation, Immune Modulation and Multi Differentiation.
Adipose tissue stem cells (ADSCs) would be an attractive autologous cell source. However,ADSCs require invasive procedures,and has potential complications. Recently,urine stem cells (USCs) have been proposed as an alternative stem cell source. In this study,we compared USCs and ADSCs collected from the same patients on stem cell characteristics and capacity to differentiate into various cell lineages to provide a useful guideline for selecting the appropriate type of cell source for use in clinical application. The urine samples were collected via urethral catheterization,and adipose tissue was obtained from subcutaneous fat tissue during elective laparoscopic kidney surgery from the same patient (n = 10). Both cells were plated for primary culture. Cell proliferation,colony formation,cell surface markers,immune modulation,chromosome stability and multi-lineage differentiation were analyzed for each USCs and ADSCs at cell passage 3,5,and 7. USCs showed high cell proliferation rate,enhanced colony forming ability,strong positive for stem cell markers expression,high efficiency for inhibition of immune cell activation compared to ADSCs at cell passage 3,5,and 7. In chromosome stability analysis,both cells showed normal karyotype through all passages. In analysis of multi-lineage capability,USCs showed higher myogenic,neurogenic,and endogenic differentiation rate,and lower osteogenic,adipogenic,and chondrogenic differentiation rate compared to ADSCs. Therefore,we expect that USC can be an alternative autologous stem cell source for muscle,neuron and endothelial tissue reconstruction instead of ADSCs.
View Publication
产品类型:
产品号#:
05752
产品名:
NeuroCult™ NS-A 分化试剂盒(人)
文献
L. Hang et al. (apr 2019)
Journal of immunology (Baltimore,Md. : 1950) 202 8 2473--2481
Heligmosomoides polygyrus bakeri Infection Decreases Smad7 Expression in Intestinal CD4+ T Cells, Which Allows TGF-beta to Induce IL-10-Producing Regulatory T Cells That Block Colitis.
Helminthic infections modulate host immunity and may protect their hosts from developing immunological diseases like inflammatory bowel disease. Induction of regulatory T cells (Tregs) may be an important part of this protective process. Heligmosomoides polygyrus bakeri infection also promotes the production of the regulatory cytokines TGF-beta and IL-10 in the gut. In the intestines,TGF-beta helps induce regulatory T cells. This study used Foxp3/IL-10 double reporter mice to investigate the effect of TGF-beta on the differentiation of colon and mesenteric lymph node-derived murine Foxp3- IL-10- CD4+ T cells into their regulatory phenotypes. Foxp3- IL-10- CD4+ T cells from H. polygyrus bakeri-infected mice,as opposed to T cells from uninfected animals,cultured in vitro with TGF-beta and anti-CD3/CD28 mAb differentiated into Foxp3+ and/or IL-10+ T cells. The IL-10-producing T cells nearly all displayed CD25. Smad7 is a natural inhibitor of TGF-beta signaling. In contrast to gut T cells from uninfected mice,Foxp3- IL10- CD4+ T cells from H. polygyrus bakeri-infected mice displayed reduced Smad7 expression and responded to TGF-beta with Smad2/3 phosphorylation. The TGF-beta-induced Tregs that express IL-10 blocked colitis when transferred into the Rag/CD25- CD4+ T cell transfer model of inflammatory bowel disease. TGF-beta had a greatly diminished capacity to induce Tregs in H. polygyrus bakeri-infected transgenic mice with constitutively high T cell-specific Smad7 expression. Thus,infection with H. polygyrus bakeri causes down-modulation in Smad7 expression in intestinal CD4+ T cells,which allows the TGF-beta produced in response to the infection to induce the Tregs that prevent colitis.
View Publication
产品类型:
产品号#:
产品名:
文献
Crabé et al. (DEC 2009)
Journal of immunology (Baltimore,Md. : 1950) 183 12 7692--702
The IL-27 p28 subunit binds cytokine-like factor 1 to form a cytokine regulating NK and T cell activities requiring IL-6R for signaling.
IL-27 is formed by the association of a cytokine subunit,p28,with the soluble cytokine receptor EBV-induced gene 3 (EBI3). The IL-27R comprises gp130 and WSX-1. The marked difference between EBI3(-/-) and WSX-1(-/-) mice suggests that p28 has functions independent of EBI3. We have identified an alternative secreted complex formed by p28 and the soluble cytokine receptor cytokine-like factor 1 (CLF). Like IL-27,p28/CLF is produced by dendritic cells and is biologically active on human NK cells,increasing IL-12- and IL-2-induced IFN-gamma production and activation marker expression. Experiments with Ba/F3 transfectants indicate that p28/CLF activates cells expressing IL-6Ralpha in addition to the IL-27R subunits. When tested on CD4 and CD8 T cells,p28/CLF induces IL-6Ralpha-dependent STAT1 and STAT3 phosphorylation. Furthermore,p28/CLF inhibits CD4 T cell proliferation and induces IL-17 and IL-10 secretion. These results indicate that p28/CLF may participate in the regulation of NK and T cell functions by dendritic cells. The p28/CLF complex engages IL-6R and may therefore be useful for therapeutic applications targeting cells expressing this receptor. Blocking IL-6R using humanized mAbs such as tocilizumab has been shown to be beneficial in pathologies like rheumatoid arthritis and juvenile idiopathic arthritis. The identification of a new IL-6R ligand is therefore important for a complete understanding of the mechanism of action of this emerging class of immunosuppressors.
View Publication
产品类型:
产品号#:
19752
19752RF
产品名:
文献
Sundberg M et al. (AUG 2013)
Stem Cells 31 8 1548--1562
Improved cell therapy protocols for Parkinson's disease based on differentiation efficiency and safety of hESC-, hiPSC-, and non-human primate iPSC-derived dopaminergic neurons
The main motor symptoms of Parkinson's disease are due to the loss of dopaminergic (DA) neurons in the ventral midbrain (VM). For the future treatment of Parkinson's disease with cell transplantation it is important to develop efficient differentiation methods for production of human iPSCs and hESCs-derived midbrain-type DA neurons. Here we describe an efficient differentiation and sorting strategy for DA neurons from both human ES/iPS cells and non-human primate iPSCs. The use of non-human primate iPSCs for neuronal differentiation and autologous transplantation is important for preclinical evaluation of safety and efficacy of stem cell-derived DA neurons. The aim of this study was to improve the safety of human- and non-human primate iPSC (PiPSC)-derived DA neurons. According to our results,NCAM(+) /CD29(low) sorting enriched VM DA neurons from pluripotent stem cell-derived neural cell populations. NCAM(+) /CD29(low) DA neurons were positive for FOXA2/TH and EN1/TH and this cell population had increased expression levels of FOXA2,LMX1A,TH,GIRK2,PITX3,EN1,NURR1 mRNA compared to unsorted neural cell populations. PiPSC-derived NCAM(+) /CD29(low) DA neurons were able to restore motor function of 6-hydroxydopamine (6-OHDA) lesioned rats 16 weeks after transplantation. The transplanted sorted cells also integrated in the rodent brain tissue,with robust TH+/hNCAM+ neuritic innervation of the host striatum. One year after autologous transplantation,the primate iPSC-derived neural cells survived in the striatum of one primate without any immunosuppression. These neural cell grafts contained FOXA2/TH-positive neurons in the graft site. This is an important proof of concept for the feasibility and safety of iPSC-derived cell transplantation therapies in the future.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Karagiannidou A et al. (FEB 2014)
Cellular reprogramming 16 1 1--8
Mesenchymal Derivatives of Genetically Unstable Human Embryonic Stem Cells Are Maintained Unstable but Undergo Senescence in Culture As Do Bone Marrow–Derived Mesenchymal Stem Cells
Recurrent chromosomal alterations have been repeatedly reported in cultured human embryonic stem cells (hESCs). The effects of these alterations on the capability of pluripotent cells to differentiate and on growth potential of their specific differentiated derivatives remain unclear. Here,we report that the hESC lines HUES-7 and -9 carrying multiple chromosomal alterations produce in vitro mesenchymal stem cells (MSCs) that show progressive growth arrest and enter senescence after 15 and 16 passages,respectively. There was no difference in their proliferative potential when compared with bone marrow-derived MSCs. Array comparative genomic hybridization analysis (aCGH) of hESCs and their mesenchymal derivatives revealed no significant differences in chromosomal alterations,suggesting that genetically altered hESCs are not selected out during differentiation. Our findings indicate that genetically unstable hESCs maintain their capacity to differentiate in vitro into MSCs,which exhibit an in vitro growth pattern of normal MSCs and not that of transformed cells.
View Publication
Minimum Transendothelial Electrical Resistance Thresholds for the Study of Small and Large Molecule Drug Transport in a Human in Vitro Blood-Brain Barrier Model.
A human cell-based in vitro model that can accurately predict drug penetration into the brain as well as metrics to assess these in vitro models are valuable for the development of new therapeutics. Here,human induced pluripotent stem cells (hPSCs) are differentiated into a polarized monolayer that express blood-brain barrier (BBB)-specific proteins and have transendothelial electrical resistance (TEER) values greater than 2500 Ωtextperiodcenteredcm(2). By assessing the permeabilities of several known drugs,a benchmarking system to evaluate brain permeability of drugs was established. Furthermore,relationships between TEER and permeability to both small and large molecules were established,demonstrating that different minimum TEER thresholds must be achieved to study the brain transport of these two classes of drugs. This work demonstrates that this hPSC-derived BBB model exhibits an in vivo-like phenotype,and the benchmarks established here are useful for assessing functionality of other in vitro BBB models.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Tan BSN et al. (JUN 2016)
Mechanisms of development 141 32--39
Regulation of amino acid transporters in pluripotent cell populations in the embryo and in culture; novel roles for sodium-coupled neutral amino acid transporters.
The developmental outcomes of preimplantation mammalian embryos are regulated directly by the surrounding microenvironment,and inappropriate concentrations of amino acids,or the loss of amino acid-sensing mechanisms,can be detrimental and impact further development. A specific role for l-proline in the differentiation of embryonic stem (ES) cells,a cell population derived from the blastocyst,has been shown in culture. l-proline acts as a signalling molecule,exerting its effects through cell uptake and subsequent metabolism. Uptake in ES cells occurs predominantly through the sodium-coupled neutral amino acid transporter 2,Slc38a2 (SNAT2). Dynamic expression of amino acid transporters has been shown in the early mammalian embryo,reflecting functional roles for amino acids in embryogenesis. The expression of SNAT2 and family member Slc38a1 (SNAT1) was determined in mouse embryos from the 2-cell stage through to the early post-implantation pre-gastrulation embryo. Key changes in expression were validated in cell culture models of development. Both transporters showed temporal dynamic expression patterns and changes in intracellular localisation as differentiation progressed. Changes in transporter expression likely reflect different amino acid requirements during development. Findings include the differential expression of SNAT1 in the inner and outer cells of the compacted morula and nuclear localisation of SNAT2 in the trophectoderm and placental lineages. Furthermore,SNAT2 expression was up-regulated in the epiblast prior to primitive ectoderm formation,an expression pattern consistent with a role for the transporter in later developmental decisions within the pluripotent lineage. We propose that the differential expression of SNAT2 in the epiblast provides evidence for an l-proline-mediated mechanism contributing to the regulation of embryonic development.
View Publication
Delivery of Proteases in Aqueous Two-Phase Systems Enables Direct Purification of Stem Cell Colonies from Feeder Cell Co-Cultures for Differentiation into Functional Cardiomyocytes
Patterning of bioactive enzymes with subcellular resolution is achieved by dispensing droplets of dextran (DEX) onto polyethylene glycol (PEG)-covered cells though a glass capillary needle connected to a pneumatic pump. This technique is applied to purify colonies of induced pluripotent stem cells (iPSCs) from mouse embryonic fibroblast (MEF) feeder cultures and inefficiently induced iPSC colonies by selectively dissociating the iPSCs with proteases.
View Publication