Lund PJ et al. (SEP 2016)
Journal of immunology (Baltimore,Md. : 1950)
Global Analysis of O-GlcNAc Glycoproteins in Activated Human T Cells.
T cell activation in response to Ag is largely regulated by protein posttranslational modifications. Although phosphorylation has been extensively characterized in T cells,much less is known about the glycosylation of serine/threonine residues by O-linked N-acetylglucosamine (O-GlcNAc). Given that O-GlcNAc appears to regulate cell signaling pathways and protein activity similarly to phosphorylation,we performed a comprehensive analysis of O-GlcNAc during T cell activation to address the functional importance of this modification and to identify the modified proteins. Activation of T cells through the TCR resulted in a global elevation of O-GlcNAc levels and in the absence of O-GlcNAc,IL-2 production and proliferation were compromised. T cell activation also led to changes in the relative expression of O-GlcNAc transferase (OGT) isoforms and accumulation of OGT at the immunological synapse of murine T cells. Using a glycoproteomics approach,we identified textgreater200 O-GlcNAc proteins in human T cells. Many of the identified proteins had a functional relationship to RNA metabolism,and consistent with a connection between O-GlcNAc and RNA,inhibition of OGT impaired nascent RNA synthesis upon T cell activation. Overall,our studies provide a global analysis of O-GlcNAc dynamics during T cell activation and the first characterization,to our knowledge,of the O-GlcNAc glycoproteome in human T cells.
View Publication
产品类型:
产品号#:
15021
15061
产品名:
RosetteSep™人T细胞富集抗体混合物
RosetteSep™人T细胞富集抗体混合物
文献
Cavalli RC et al. ( 2016)
PloS one 11 10 e0164353
Induced Human Decidual NK-Like Cells Improve Utero-Placental Perfusion in Mice.
Decidual NK (dNK) cells,a distinct type of NK cell,are thought to regulate uterine spiral artery remodeling,a process that allows for increased blood delivery to the fetal-placental unit. Impairment of uterine spiral artery remodeling is associated with decreased placental perfusion,increased uterine artery resistance,and obstetric complications such as preeclampsia and intrauterine growth restriction. Ex vivo manipulation of human peripheral blood NK (pNK) cells by a combination of hypoxia,TGFß-1 and 5-aza-2'-deoxycytidine yields cells with phenotypic and in vitro functional similarities to dNK cells,called idNK cells. Here,gene expression profiling shows that CD56Bright idNK cells derived ex vivo from human pNK cells,and to a lesser extent CD56Dim idNK cells,are enriched in the gene expression signature that distinguishes dNK cells from pNK cells. When injected into immunocompromised pregnant mice with elevated uterine artery resistance,idNK cells homed to the uterus and reduced the uterine artery resistance index,suggesting improved placental perfusion.
View Publication
产品类型:
产品号#:
15025
15065
产品名:
RosetteSep™人NK细胞富集抗体混合物
RosetteSep™人NK细胞富集抗体混合物
文献
Baker D et al. (NOV 2016)
Stem cell reports 7 5 998--1012
Detecting Genetic Mosaicism in Cultures of Human Pluripotent Stem Cells.
Genetic changes in human pluripotent stem cells (hPSCs) gained during culture can confound experimental results and potentially jeopardize the outcome of clinical therapies. Particularly common changes in hPSCs are trisomies of chromosomes 1,12,17,and 20. Thus,hPSCs should be regularly screened for such aberrations. Although a number of methods are used to assess hPSC genotypes,there has been no systematic evaluation of the sensitivity of the commonly used techniques in detecting low-level mosaicism in hPSC cultures. We have performed mixing experiments to mimic the naturally occurring mosaicism and have assessed the sensitivity of chromosome banding,qPCR,fluorescence in situ hybridization,and digital droplet PCR in detecting variants. Our analysis highlights the limits of mosaicism detection by the commonly employed methods,a pivotal requirement for interpreting the genetic status of hPSCs and for setting standards for safe applications of hPSCs in regenerative medicine.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Lavasani M et al. (APR 2014)
The Journal of clinical investigation 124 4 1745--56
Human muscle-derived stem/progenitor cells promote functional murine peripheral nerve regeneration.
Peripheral nerve injuries and neuropathies lead to profound functional deficits. Here,we have demonstrated that muscle-derived stem/progenitor cells (MDSPCs) isolated from adult human skeletal muscle (hMDSPCs) can adopt neuronal and glial phenotypes in vitro and ameliorate a critical-sized sciatic nerve injury and its associated defects in a murine model. Transplanted hMDSPCs surrounded the axonal growth cone,while hMDSPCs infiltrating the regenerating nerve differentiated into myelinating Schwann cells. Engraftment of hMDSPCs into the area of the damaged nerve promoted axonal regeneration,which led to functional recovery as measured by sustained gait improvement. Furthermore,no adverse effects were observed in these animals up to 18 months after transplantation. Following hMDSPC therapy,gastrocnemius muscles from mice exhibited substantially less muscle atrophy,an increase in muscle mass after denervation,and reorganization of motor endplates at the postsynaptic sites compared with those from PBS-treated mice. Evaluation of nerve defects in animals transplanted with vehicle-only or myoblast-like cells did not reveal histological or functional recovery. These data demonstrate the efficacy of hMDSPC-based therapy for peripheral nerve injury and suggest that hMDSPC transplantation has potential to be translated for use in human neuropathies.
View Publication
产品类型:
产品号#:
05750
05751
产品名:
NeuroCult™ NS-A 基础培养基(人)
NeuroCult™ NS-A 扩增试剂盒(人)
文献
C. R. Seehus et al. (DEC 2017)
Nature communications 8 1 1900
Alternative activation generates IL-10 producing type 2 innate lymphoid cells.
Type 2 innate lymphoid cells (ILC2) share cytokine and transcription factor expression with CD4+ Th2 cells,but functional diversity of the ILC2 lineage has yet to be fully explored. Here,we show induction of a molecularly distinct subset of activated lung ILC2,termed ILC210. These cells produce IL-10 and downregulate some pro-inflammatory genes. Signals that generate ILC210 are distinct from those that induce IL-13 production,and gene expression data indicate that an alternative activation pathway leads to the generation of ILC210. In vivo,IL-2 enhances ILC210 generation and is associated with decreased eosinophil recruitment to the lung. Unlike most activated ILC2,the ILC210 population contracts after cessation of stimulation in vivo,with maintenance of a subset that can be recalled by restimulation,analogous to T-cell effector cell and memory cell generation. These data demonstrate the generation of a previously unappreciated IL-10 producing ILC2 effector cell population.
View Publication
产品类型:
产品号#:
19860
19860RF
85415
85420
85450
85460
86415
86420
86450
86460
产品名:
EasySep™小鼠Streptavidin RapidSpheres™分选试剂盒
RoboSep™ 小鼠Streptavidin RapidSpheres™分选试剂盒
SepMate™-15 (IVD)
SepMate™-15 (IVD)
SepMate™-50 (IVD)
SepMate™-50 (IVD)
SepMate™-15 (RUO)
SepMate™-15 (RUO)
SepMate™-50 (RUO)
SepMate™-50 (RUO)
文献
Xia G and Ashizawa T (JUN 2015)
Histochemistry and cell biology 143 6 557--64
Dynamic changes of nuclear RNA foci in proliferating DM1 cells.
Nuclear RNA foci are molecular hallmarks of myotonic dystrophy type 1 (DM1). However,no designated study has investigated their formation and changes in proliferating cells. Proliferating cells,as stem cells,consist of an important cellular pool in the human body. The revelation of foci changes in these cells might shed light on the effects of the mutation on these specific cells and tissues. In this study,we used human DM1 iPS-cell-derived neural stem cells (NSCs) as cellular models to investigate the formation and dynamic changes of RNA foci in proliferating cells. Human DM1 NSCs derived from human DM1 iPS cells were cultured under proliferation conditions and nonproliferation conditions following mitomycin C treatment. The dynamic changes of foci during the cell cycle were investigated by fluorescence in situ hybridization. We found RNA foci formed and dissociated during the cell cycle. Nuclear RNA foci were most prominent in number and size just prior to entering mitosis (early prophase). During mitosis,most foci disappeared. After entering interphase,RNA foci accumulated again in the nuclei. After stopping cell dividing by treatment of mitomycin C,the number of nuclear RNA foci increased significantly. In summary,DM1 NSC nuclear RNA foci undergo dynamic changes during cell cycle,and mitosis is a mechanism to decrease foci load in the nuclei,which may explain why dividing cells are less affected by the mutation. The dynamic changes need to be considered when using foci as a marker to monitor the effects of therapeutic drugs.
View Publication
产品类型:
产品号#:
05750
05751
产品名:
NeuroCult™ NS-A 基础培养基(人)
NeuroCult™ NS-A 扩增试剂盒(人)
文献
C.-W. Li et al. (FEB 2018)
Cancer cell 33 2 187--201.e10
Eradication of Triple-Negative Breast Cancer Cells by Targeting Glycosylated PD-L1.
Protein glycosylation provides proteomic diversity in regulating protein localization,stability,and activity; it remains largely unknown whether the sugar moiety contributes to immunosuppression. In the study of immune receptor glycosylation,we showed that EGF induces programmed death ligand 1 (PD-L1) and receptor programmed cell death protein 1 (PD-1) interaction,requiring beta$-1,3-N-acetylglucosaminyl transferase (B3GNT3) expression in triple-negative breast cancer. Downregulation of B3GNT3 enhances cytotoxic T cell-mediated anti-tumor immunity. A monoclonal antibody targeting glycosylated PD-L1 (gPD-L1) blocks PD-L1/PD-1 interaction and promotes PD-L1 internalization and degradation. In addition to immune reactivation,drug-conjugated gPD-L1 antibody induces a potent cell-killing effect as well as a bystander-killing effect on adjacent cancer cells lacking PD-L1 expression without any detectable toxicity. Our work suggests targeting protein glycosylation as a potential strategy to enhance immune checkpoint therapy.
View Publication
产品类型:
产品号#:
10971
10991
70025
70025.1
70025.2
70025.3
产品名:
ImmunoCult™ 人CD3/CD28 T细胞激活剂
ImmunoCult™ 人CD3/CD28 T细胞激活剂
冻存的人外周血单个核细胞
冻存的人外周血单个核细胞
冻存的人外周血单个核细胞
冻存的人外周血单个核细胞
文献
X. Guan et al. (jun 2022)
Nature 606 7915 791--796
Androgen receptor activity in T cells limits checkpoint blockade efficacy.
Immune checkpoint blockade has revolutionized the field of oncology,inducing durable anti-tumour immunity in solid tumours. In patients with advanced prostate cancer,immunotherapy treatments have largely failed1-5. Androgen deprivation therapy is classically administered in these patients to inhibit tumour cell growth,and we postulated that this therapy also affects tumour-associated T cells. Here we demonstrate that androgen receptor (AR) blockade sensitizes tumour-bearing hosts to effective checkpoint blockade by directly enhancing CD8 T cell function. Inhibition of AR activity in CD8 T cells prevented T cell exhaustion and improved responsiveness to PD-1 targeted therapy via increased IFN$\gamma$ expression. AR bound directly to Ifng and eviction of AR with a small molecule significantly increased cytokine production in CD8 T cells. Together,our findings establish that T cell intrinsic AR activity represses IFN$\gamma$ expression and represents a novel mechanism of immunotherapy resistance.
View Publication
产品类型:
产品号#:
17684
产品名:
EasySep™ PE正选试剂盒 II
文献
Jones DT et al. (MAR 2004)
Blood 103 5 1855--61
Geldanamycin and herbimycin A induce apoptotic killing of B chronic lymphocytic leukemia cells and augment the cells' sensitivity to cytotoxic drugs.
We studied the actions of geldanamycin (GA) and herbimycin A (HMA),inhibitors of the chaperone proteins Hsp90 and GRP94,on B chronic lymphocytic leukemia (CLL) cells in vitro. Both drugs induced apoptosis of the majority of CLL isolates studied. Whereas exposure to 4-hour pulses of 30 to 100 nM GA killed normal B lymphocytes and CLL cells with similar dose responses,T lymphocytes from healthy donors as well as those present in the CLL isolates were relatively resistant. GA,but not HMA,showed a modest cytoprotective effect toward CD34+ hematopoietic progenitors from normal bone marrow. The ability of bone marrow progenitors to form hematopoietic colonies was unaffected by pulse exposures to GA. Both GA and HMA synergized with chlorambucil and fludarabine in killing a subset of CLL isolates. GA- and HMA-induced apoptosis was preceded by the up-regulation of the stress-responsive chaperones Hsp70 and BiP. Both ansamycins also resulted in down-regulation of Akt protein kinase,a modulator of cell survival. The relative resistance of T lymphocytes and of CD34+ bone marrow progenitors to GA coupled with its ability to induce apoptosis following brief exposures and to synergize with cytotoxic drugs warrant further investigation of ansamycins as potential therapeutic agents in CLL.
View Publication
产品类型:
产品号#:
04434
04444
产品名:
MethoCult™H4434经典
MethoCult™H4434经典
文献
Hu B-Y and Zhang S-C (JAN 2009)
Nature protocols 4 9 1295--304
Differentiation of spinal motor neurons from pluripotent human stem cells.
We have devised a reproducible protocol by which human embryonic stem cells (hESCs) or inducible pluripotent stem cells (iPSCs) are efficiently differentiated to functional spinal motor neurons. This protocol comprises four major steps. Pluripotent stem cells are induced to form neuroepithelial (NE) cells that form neural tube-like rosettes in the absence of morphogens in the first 2 weeks. The NE cells are then specified to OLIG2-expressing motoneuron progenitors in the presence of retinoic acid (RA) and sonic hedgehog (SHH) or purmorphamine in the next 2 weeks. These progenitor cells further generate post-mitotic,HB9-expressing motoneurons at the 5th week and mature to functional motor neurons thereafter. It typically takes 5 weeks to generate the post-mitotic motoneurons and 8-10 weeks for the production of functional mature motoneurons. In comparison with other methods,our protocol does not use feeder cells,has a minimum dependence on proteins (purmorphamine replacing SHH),has controllable adherent selection and is adaptable for scalable suspension culture.
View Publication
产品类型:
产品号#:
72202
72204
产品名:
Purmorphamine
Purmorphamine
文献
Carpenter L et al. (APR 2011)
Blood 117 15 4008--4011
Human induced pluripotent stem cells are capable of B-cell lymphopoiesis.
Induced pluripotent stem (iPS) cells offer a unique potential for understanding the molecular basis of disease and development. Here we have generated several human iPS cell lines,and we describe their pluripotent phenotype and ability to differentiate into erythroid cells,monocytes,and endothelial cells. More significantly,however,when these iPS cells were differentiated under conditions that promote lympho-hematopoiesis from human embryonic stem cells,we observed the formation of pre-B cells. These cells were CD45(+)CD19(+)CD10(+) and were positive for transcripts Pax5,IL7αR,λ-like,and VpreB receptor. Although they were negative for surface IgM and CD5 expression,iPS-derived CD45(+)CD19(+) cells also exhibited multiple genomic D-J(H) rearrangements,which supports a pre-B-cell identity. We therefore have been able to demonstrate,for the first time,that human iPS cells are able to undergo hematopoiesis that contributes to the B-cell lymphoid lineage.
View Publication
Telomerase protects werner syndrome lineage-specific stem cells from premature aging.
Werner syndrome (WS) patients exhibit premature aging predominantly in mesenchyme-derived tissues,but not in neural lineages,a consequence of telomere dysfunction and accelerated senescence. The cause of this lineage-specific aging remains unknown. Here,we document that reprogramming of WS fibroblasts to pluripotency elongated telomere length and prevented telomere dysfunction. To obtain mechanistic insight into the origin of tissue-specific aging,we differentiated iPSCs to mesenchymal stem cells (MSCs) and neural stem/progenitor cells (NPCs). We observed recurrence of premature senescence associated with accelerated telomere attrition and defective synthesis of the lagging strand telomeres in MSCs,but not in NPCs. We postulate this aging" discrepancy is regulated by telomerase. Expression of hTERT or p53 knockdown ameliorated the accelerated aging phenotypein MSC�
View Publication