Dirian L et al. (JUL 2014)
Developmental cell 30 2 123--36
Spatial regionalization and heterochrony in the formation of adult pallial neural stem cells.
Little is known on the embryonic origin and related heterogeneity of adult neural stem cells (aNSCs). We use conditional genetic tracing,activated in a global or mosaic fashion by cell type-specific promoters or focal laser uncaging,coupled with gene expression analyses and Notch invalidations,to address this issue in the zebrafish adult telencephalon. We report that the germinal zone of the adult pallium originates from two distinct subtypes of embryonic progenitors and integrates two modes of aNSC formation. Dorsomedial aNSCs derive from the amplification of actively neurogenic radial glia of the embryonic telencephalon. On the contrary,the lateral aNSC population is formed by stepwise addition at the pallial edge from a discrete neuroepithelial progenitor pool of the posterior telencephalic roof,activated at postembryonic stages and persisting lifelong. This dual origin of the pallial germinal zone allows the temporally organized building of pallial territories as a patchwork of juxtaposed compartments.
View Publication
产品类型:
产品号#:
72792
72794
产品名:
LY411575
LY411575
文献
Louis SA et al. (APR 2008)
Stem cells (Dayton,Ohio) 26 4 988--96
Enumeration of neural stem and progenitor cells in the neural colony-forming cell assay.
Advancement in our understanding of the biology of adult stem cells and their therapeutic potential relies heavily on meaningful functional assays that can identify and measure stem cell activity in vivo and in vitro. In the mammalian nervous system,neural stem cells (NSCs) are often studied using a culture system referred to as the neurosphere assay. We previously challenged a central tenet of this assay,that all neurospheres are derived from a NSC,and provided evidence that it overestimates NSC frequency,rendering it inappropriate for quantitation of NSC frequency in relation to NSC regulation. Here we report the development and validation of the neural colony-forming cell assay (NCFCA),which discriminates stem from progenitor cells on the basis of their proliferative potential. We anticipate that the NCFCA will provide additional clarity in discerning the regulation of NSCs,thereby facilitating further advances in the promising application of NSCs for therapeutic use.
View Publication
产品类型:
产品号#:
05700
05701
05702
05715
产品名:
NeuroCult™ 基础培养基(小鼠和大鼠)
NeuroCult™ 扩增添加物(小鼠和大鼠)
NeuroCult™扩增试剂盒(小鼠和大鼠)
NeuroCult™成年中枢神经系统(CNS)组织酶解试剂盒(小鼠和大鼠)
文献
Bä et al. (JAN 2009)
Cells,tissues,organs 189 1-4 93--7
Activation of Sirt1 decreases adipocyte formation during osteoblast differentiation of mesenchymal stem cells.
Mesenchymal stem cells (MSC) can differentiate into osteoblasts,adipocytes,chondrocytes and myoblasts. It has been suggested that a reciprocal relationship exists between the differentiation of MSC into osteoblasts and adipocytes. Peroxisome proliferator-activated receptor gamma2 (PPARgamma2) is a key element for the differentiation into adipocytes. Activation of the nuclear protein deacetylase Sirt1 has recently been shown to decrease adipocyte development from preadipocytes via inhibition of PPARgamma2. In vitro,MSC differentiate to osteoblasts when exposed to bone-inducing medium. However,adipocytes are also developed. In the present study we have targeted Sirt1 to control adipocyte development during differentiation of MSC into osteoblasts. The finding that resveratrol and isonicotinamide markedly inhibited adipocyte and promoted osteoblast differentiation demonstrates an interesting alternative to PPARgamma antagonists. These results are important for the evolving field of cell-based tissue engineering,but may also be relevant in the search for new treatments of osteoporosis.
View Publication
产品类型:
产品号#:
72862
72864
产品名:
白藜芦醇(Resveratrol)
白藜芦醇(Resveratrol)
文献
Deng S et al. (JAN 2010)
PloS one 5 4 e10277
Distinct expression levels and patterns of stem cell marker, aldehyde dehydrogenase isoform 1 (ALDH1), in human epithelial cancers.
Aldehyde dehydrogenase isoform 1 (ALDH1) has been proved useful for the identification of cancer stem cells. However,our knowledge of the expression and activity of ALDH1 in common epithelial cancers and their corresponding normal tissues is still largely absent. Therefore,we characterized ALDH1 expression in 24 types of normal tissues and a large collection of epithelial tumor specimens (six cancer types,n = 792) by immunohistochemical staining. Using the ALDEFUOR assay,ALDH1 activity was also examined in 16 primary tumor specimens and 43 established epithelial cancer cell lines. In addition,an ovarian cancer transgenic mouse model and 7 murine ovarian cancer cell lines were analyzed. We found that the expression levels and patterns of ALDH1 in epithelial cancers are remarkably distinct,and they correlate with their corresponding normal tissues. ALDH1 protein expression levels are positively correlated with ALDH1 enzymatic activity measured by ALDEFLUOR assay. Long-term in vitro culture doesn't significantly affect ALDH1 activity in epithelial tumor cells. Consistent with research on other cancers,we found that high ALDH1 expression is significantly associated with poor clinical outcomes in serous ovarian cancer patients (n = 439,p = 0.0036). Finally,ALDH(br) tumor cells exhibit cancer stem cell properties and are resistant to chemotherapy. As a novel cancer stem cell marker,ALDH1 can be used for tumors whose corresponding normal tissues express ALDH1 in relatively restricted or limited levels such as breast,lung,ovarian or colon cancer.
View Publication
产品类型:
产品号#:
01700
01705
01702
05620
产品名:
ALDEFLUOR™工具
ALDEFLUOR™DEAB试剂
ALDEFLUOR™测定缓冲液
MammoCult™ 人源培养基套装
文献
Jasinski M et al. (OCT 2001)
Blood 98 7 2248--55
GATA1-Cre mediates Piga gene inactivation in the erythroid/megakaryocytic lineage and leads to circulating red cells with a partial deficiency in glycosyl phosphatidylinositol-linked proteins (paroxysmal nocturnal hemoglobinuria type II cells).
Patients with paroxysmal nocturnal hemoglobinuria (PNH) have blood cells deficient in glycosyl phosphatidylinositol (GPI)-linked proteins owing to a somatic mutation in the X-linked PIGA gene. To target Piga recombination to the erythroid/megakaryocytic lineage in mice,the Cre/loxP system was used,and Cre was expressed under the transcriptional regulatory sequences of GATA-1. Breeding of GATA1-cre (G) transgenic mice with mice carrying a floxed Piga (L) allele was associated with high embryonic lethality. However,double-transgenic (GL) mice that escaped early recombination looked healthy and were observed for 16 months. Flow cytometric analysis of peripheral blood cells showed that GL mice had up to 100% of red cells deficient in GPI-linked proteins. The loss of GPI-linked proteins on the cell surface occurred late in erythroid differentiation,causing a proportion of red cells to express low residual levels of GPI-linked proteins. Red cells with residual expression of GPI-linked proteins showed an intermediate sensitivity toward complement and thus resemble PNH type II cells in patients with PNH. Recombination of the floxed Piga allele was also detected in cultured megakaryocytes,mast cells,and eosinophils,but not in neutrophils,lymphocytes,or nonhematopoietic tissues. In summary,GATA1-Cre causes high-efficiency Piga gene inactivation in a GATA-1-specific pattern. For the first time,mice were generated that have almost 100% of red cells deficient in GPI-linked proteins. These animals will be valuable to further investigate the consequences of GPI-anchor deficiency on erythroid/megakaryocytic cells.
View Publication
产品类型:
产品号#:
产品名:
文献
Smith BW et al. ( 2016)
Stem Cells International 2016 2574152
Genome Editing of the CYP1A1 Locus in iPSCs as a Platform to Map AHR Expression throughout Human Development
The aryl hydrocarbon receptor (AHR) is a ligand activated transcription factor that increases the expression of detoxifying enzymes upon ligand stimulation. Recent studies now suggest that novel endogenous roles of the AHR exist throughout development. In an effort to create an optimized model system for the study of AHR signaling in several cellular lineages,we have employed a CRISPR/CAS9 genome editing strategy in induced pluripotent stem cells (iPSCs) to incorporate a reporter cassette at the transcription start site of one of its canonical targets,cytochrome P450 1A1 (CYP1A1). This cell line faithfully reports on CYP1A1 expression,with luciferase levels as its functional readout,when treated with an endogenous AHR ligand (FICZ) at escalating doses. iPSC-derived fibroblast-like cells respond to acute exposure to environmental and endogenous AHR ligands,and iPSC-derived hepatocytes increase CYP1A1 in a similar manner to primary hepatocytes. This cell line is an important innovation that can be used to map AHR activity in discrete cellular subsets throughout developmental ontogeny. As further endogenous ligands are proposed,this line can be used to screen for safety and efficacy and can report on the ability of small molecules to regulate critical cellular processes by modulating the activity of the AHR.
View Publication
产品类型:
产品号#:
05110
85850
85857
产品名:
STEMdiff™权威内胚层检测试剂盒
mTeSR™1
mTeSR™1
文献
Kearns NA et al. (NOV 2013)
Stem Cell Research 11 3 1003--1012
Generation of organized anterior foregut epithelia from pluripotent stem cells using small molecules
Anterior foregut endoderm (AFE) gives rise to therapeutically relevant cell types in tissues such as the esophagus,salivary glands,lung,thymus,parathyroid and thyroid. Despite its importance,reports describing the generation of AFE from pluripotent stem cells (PSCs) by directed differentiation have mainly focused on the Nkx2.1(+) lung and thyroid lineages. Here,we describe a novel protocol to derive a subdomain of AFE,identified by expression of Pax9,from PSCs using small molecules and defined media conditions. We generated a reporter PSC line for isolation and characterization of Pax9(+) AFE cells,which when transplanted in vivo,can form several distinct complex AFE-derived epithelia,including mucosal glands and stratified squamous epithelium. Finally,we show that the directed differentiation protocol can be used to generate AFE from human PSCs. Thus,this work both broadens the range of PSC-derived AFE tissues and creates a platform enabling the study of AFE disorders.
View Publication
Differentiation of osteoblasts and in vitro bone formation from murine embryonic stem cells.
Pluripotent embryonic stem (ES) cells have the potential to differentiate to all fetal and adult cell types and might represent a useful cell source for tissue engineering and repair. Here we show that differentiation of ES cells toward the osteoblast lineage can be enhanced by supplementing serum-containing media with ascorbic acid,beta-glycerophosphate,and/or dexamethasone/retinoic acid or by co-culture with fetal murine osteoblasts. ES cell differentiation into osteoblasts was characterized by the formation of discrete mineralized bone nodules that consisted of 50-100 cells within an extracellular matrix of collagen-1 and osteocalcin. Dexamethasone in combination with ascorbic acid and beta-glycerophosphate induced the greatest number of bone nodules and was dependent on time of stimulation with a sevenfold increase when added to ES cultures after,but not before,14 days. Co-culture with fetal osteoblasts also provided a potent stimulus for osteogenic differentiation inducing a fivefold increase in nodule number relative to ES cells cultured alone. These data demonstrate the application of a quantitative assay for the derivation of osteoblast lineage progenitors from pluripotent ES cells. This could be applied to obtain purified osteoblasts to analyze mechanisms of osteogenesis and for use of ES cells in skeletal tissue repair.
View Publication
产品类型:
产品号#:
产品名:
文献
Kitsos CM et al. (SEP 2005)
The Journal of biological chemistry 280 39 33101--8
Calmodulin-dependent protein kinase IV regulates hematopoietic stem cell maintenance.
The hematopoietic stem cell (HSC) gives rise to all mature,terminally differentiated cells of the blood. Here we show that calmodulin-dependent protein kinase IV (CaMKIV) is present in c-Kit+ ScaI+ Lin(-/low) hematopoietic progenitor cells (KLS cells) and that its absence results in hematopoietic failure,characterized by a diminished KLS cell population and by an inability of these cells to reconstitute blood cells upon serial transplantation. KLS cell failure in the absence of CaMKIV is correlated with increased apoptosis and proliferation of these cells in vivo and in vitro. In turn,these cell biological defects are correlated with decreases in CREB-serine 133 phosphorylation as well as in CREB-binding protein (CBP) and Bcl-2 levels. Re-expression of CaMKIV in Camk4-/- KLS cells results in the rescue of the proliferation defects in vitro as well as in the restoration of CBP and Bcl-2 to wild type levels. These studies show that CaMKIV is a regulator of HSC homeostasis and suggest that its effects may be in part mediated via regulation of CBP and Bcl-2.
View Publication
产品类型:
产品号#:
03434
03444
产品名:
MethoCult™GF M3434
MethoCult™GF M3434
文献
Ito CY et al. (JAN 2003)
Blood 101 2 517--23
Hematopoietic stem cell and progenitor defects in Sca-1/Ly-6A-null mice.
Despite its wide use as a marker for hematopoietic stem cells (HSCs),the function of stem cell antigen-1 (Sca-1) (also known as lymphocyte activation protein-6A [Ly-6A]) in hematopoiesis remains poorly defined. We have previously established that Sca-1(-/-) T cells develop normally,although they are hyperresponsive to antigen. Here,we report detailed analysis of hematopoiesis in Sca-1-deficient animals. The differentiation potential of Sca-1-null bone marrow was determined from examination of the most mature precursors (culture colony-forming units [CFU-Cs]) to less committed progenitors (spleen CFUs [CFU-Ss]) to long-term repopulating HSCs. Sca-1-null mice are mildly thrombocytopenic with a concomitant decrease in megakaryocytes and their precursors. Bone marrow cells derived from Sca-1(-/-) mice also have decreased multipotential granulocyte,erythroid,macrophage,and megakaryocyte CFU (GEMM-CFU) and CFU-S progenitor activity. Competitive repopulation assays demonstrated that Sca-1(-/-) HSCs are at a competitive disadvantage compared with wild-type HSCs. To further analyze the potential of Sca-1(-/-) HSCs,serial transplantations were performed. While secondary repopulations using wild-type bone marrow completely repopulated Sca-1(-/-) mice,Sca-1(-/-) bone marrow failed to rescue one third of lethally irradiated wild-type mice receiving secondary bone marrow transplants from irradiation-induced anemia and contributed poorly to the surviving transplant recipients. These data strongly suggest that Sca-1 is required for regulating HSC self-renewal and the development of committed progenitor cells,megakaryocytes,and platelets. Thus,our studies conclusively demonstrate that Sca-1,in addition to being a marker of HSCs,regulates the developmental program of HSCs and specific progenitor populations.
View Publication
产品类型:
产品号#:
03434
03444
04960
04902
04900
04961
04901
04963
04962
04970
04971
产品名:
MethoCult™GF M3434
MethoCult™GF M3434
MegaCult™-C胶原蛋白和不含细胞因子的培养基
胶原蛋白溶液
MegaCult™-C培养基无细胞因子
MegaCult™-C胶原蛋白和细胞因子培养基
MegaCult™-C细胞因子培养基
双室载玻片试剂盒
MegaCult™-C cfu染色试剂盒
MegaCult™-C不含细胞因子完整试剂盒
MegaCult™-C细胞因子完整试剂盒
文献
Avery S et al. (NOV 2013)
Stem Cell Reports 1 5 379--386
BCL-XL Mediates the Strong Selective Advantage of a 20q11.21 Amplification Commonly Found in Human Embryonic Stem Cell Cultures
Summary Human embryonic stem cells (hESCs) regularly acquire nonrandom genomic aberrations during culture,raising concerns about their safe therapeutic application. The International Stem Cell Initiative identified a copy number variant (CNV) amplification of chromosome 20q11.21 in 25% of hESC lines displaying a normal karyotype. By comparing four cell lines paired for the presence or absence of this CNV,we show that those containing this amplicon have higher population doubling rates,attributable to enhanced cell survival through resistance to apoptosis. Of the three genes encoded within the minimal amplicon and expressed in hESCs,only overexpression of BCL2L1 (BCL-XL isoform) provides control cells with growth characteristics similar to those of CNV-containing cells,whereas inhibition of BCL-XL suppresses the growth advantage of CNV cells,establishing BCL2L1 as a driver mutation. Amplification of the 20q11.21 region is also detectable in human embryonal carcinoma cell lines and some teratocarcinomas,linking this mutation with malignant transformation.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Li H-L et al. (JAN 2016)
Cell death & disease 7 1 e2078
miR-302 regulates pluripotency, teratoma formation and differentiation in stem cells via an AKT1/OCT4-dependent manner.
Pluripotency makes human pluripotent stem cells (hPSCs) promising for regenerative medicine,but the teratoma formation has been considered to be a major obstacle for their clinical applications. Here,we determined that the downregulation of miR-302 suppresses the teratoma formation,hampers the self-renewal and pluripotency,and promotes hPSC differentiation. The underlying mechanism is that the high endogenous expression of miR-302 suppresses the AKT1 expression by directly targeting its 3'UTR and subsequently maintains the pluripotent factor OCT4 at high level. Our findings reveal that miR-302 regulates OCT4 by suppressing AKT1,which provides hPSCs two characteristics related to their potential for clinical applications: the benefit of pluripotency and the hindrance of teratoma formation. More importantly,we demonstrate that miR-302 upregulation cannot lead OCT4 negative human adult mesenchymal stem cells (hMSCs) to acquire the teratoma formation in vivo. Whether miR-302 upregulation can drive hMSCs to acquire a higher differentiation potential is worthy of deep investigation.
View Publication