Lancaster MA and Knoblich JA (OCT 2014)
Nature protocols 9 10 2329--2340
Generation of cerebral organoids from human pluripotent stem cells.
Human brain development exhibits several unique aspects,such as increased complexity and expansion of neuronal output,that have proven difficult to study in model organisms. As a result,in vitro approaches to model human brain development and disease are an intense area of research. Here we describe a recently established protocol for generating 3D brain tissue,so-called cerebral organoids,which closely mimics the endogenous developmental program. This method can easily be implemented in a standard tissue culture room and can give rise to developing cerebral cortex,ventral telencephalon,choroid plexus and retinal identities,among others,within 1-2 months. This straightforward protocol can be applied to developmental studies,as well as to the study of a variety of human brain diseases. Furthermore,as organoids can be maintained for more than 1 year in long-term culture,they also have the potential to model later events such as neuronal maturation and survival.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Setoguchi K et al. (APR 2016)
Journal of Molecular Biology 428 7 1465--1475
P53 Regulates Rapid Apoptosis in Human Pluripotent Stem Cells
Human pluripotent stem cells (hPSCs) are sensitive to DNA damage and undergo rapid apoptosis compared to their differentiated progeny cells. Here,we explore the underlying mechanisms for the increased apoptotic sensitivity of hPSCs that helps to determine pluripotent stem cell fate. Apoptosis was induced by exposure to actinomycin D,etoposide,or tunicamycin,with each agent triggering a distinct apoptotic pathway. We show that hPSCs are more sensitive to all three types of apoptosis induction than are lineage-non-specific,retinoic-acid-differentiated hPSCs. Also,Bax activation and pro-apoptotic mitochondrial intermembrane space protein release,which are required to initiate the mitochondria-mediated apoptosis pathway,are more rapid in hPSCs than in retinoic-acid-differentiated hPSCs. Surprisingly,Bak and not Bax is essential for actinomycin-D-induced apoptosis in human embryonic stem cells. Finally,P53 is degraded rapidly in an ubiquitin-proteasome-dependent pathway in hPSCs at steady state but quickly accumulates and induces apoptosis when Mdm2 function is impaired. Rapid degradation of P53 ensures the survival of healthy hPSCs but avails these cells for immediate apoptosis upon cellular damage by P53 stabilization. Altogether,we provide an underlying,interconnected molecular mechanism that primes hPSCs for quick clearance by apoptosis to eliminate hPSCs with unrepaired genome alterations and preserves organismal genomic integrity during the early critical stages of human embryonic development.
View Publication
产品类型:
产品号#:
07923
85850
85857
产品名:
Dispase (1 U/mL)
mTeSR™1
mTeSR™1
文献
Phadnis SM et al. (SEP 2015)
Scientific reports 5 14209
Dynamic and social behaviors of human pluripotent stem cells.
Human pluripotent stem cells (hPSCs) can self-renew or differentiate to diverse cell types,thus providing a platform for basic and clinical applications. However,pluripotent stem cell populations are heterogeneous and functional properties at the single cell level are poorly documented leading to inefficiencies in differentiation and concerns regarding reproducibility and safety. Here,we use non-invasive time-lapse imaging to continuously examine hPSC maintenance and differentiation and to predict cell viability and fate. We document dynamic behaviors and social interactions that prospectively distinguish hPSC survival,self-renewal,and differentiation. Results highlight the molecular role of E-cadherin not only for cell-cell contact but also for clonal propagation of hPSCs. Results indicate that use of continuous time-lapse imaging can distinguish cellular heterogeneity with respect to pluripotency as well as a subset of karyotypic abnormalities whose dynamic properties were monitored.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
West FD et al. ( 2015)
1330 153--167
Generation of Chimeras from Porcine Induced Pluripotent Stem Cells
Pig induced pluripotent stem cells (piPSCs) offer a great opportunity and a number of advantages in the generation of transgenic animals. These immortalized cells can undergo multiple rounds of genetic modifications (e.g.,gene knock-in,knockout) and selection leading to animals that have optimized traits of biomedical or agricultural interests. In this chapter we describe the production and characterization of piPSCs,microinjection of piPSCs into embryos,embryo transfer and production of chimeric animals based on successful protocols.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Sagi I et al. (APR 2016)
Nature 532 7597 107--11
Derivation and differentiation of haploid human embryonic stem cells.
Diploidy is a fundamental genetic feature in mammals,in which haploid cells normally arise only as post-meiotic germ cells that serve to ensure a diploid genome upon fertilization. Gamete manipulation has yielded haploid embryonic stem (ES) cells from several mammalian species,but haploid human ES cells have yet to be reported. Here we generated and analysed a collection of human parthenogenetic ES cell lines originating from haploid oocytes,leading to the successful isolation and maintenance of human ES cell lines with a normal haploid karyotype. Haploid human ES cells exhibited typical pluripotent stem cell characteristics,such as self-renewal capacity and a pluripotency-specific molecular signature. Moreover,we demonstrated the utility of these cells as a platform for loss-of-function genetic screening. Although haploid human ES cells resembled their diploid counterparts,they also displayed distinct properties including differential regulation of X chromosome inactivation and of genes involved in oxidative phosphorylation,alongside reduction in absolute gene expression levels and cell size. Surprisingly,we found that a haploid human genome is compatible not only with the undifferentiated pluripotent state,but also with differentiated somatic fates representing all three embryonic germ layers both in vitro and in vivo,despite a persistent dosage imbalance between the autosomes and X chromosome. We expect that haploid human ES cells will provide novel means for studying human functional genomics and development.
View Publication
产品类型:
产品号#:
05110
85850
85857
产品名:
STEMdiff™权威内胚层检测试剂盒
mTeSR™1
mTeSR™1
文献
Stingl J et al. (MAR 2006)
Nature 439 7079 993--7
Purification and unique properties of mammary epithelial stem cells.
Elucidation of the cellular and molecular mechanisms that maintain mammary epithelial tissue integrity is of broad interest and paramount to the design of more effective treatments for breast cancer. Evidence from both in vitro and in vivo experiments suggests that mammary cell differentiation is a hierarchical process originating in an uncommitted stem cell with self-renewal potential. However,analysis of the properties and regulation of mammary stem cells has been limited by a lack of methods for their prospective isolation. Here we report the use of multi-parameter cell sorting and limiting dilution transplant analysis to demonstrate the purification of a rare subset of adult mouse mammary cells that are able individually to regenerate an entire mammary gland within 6 weeks in vivo while simultaneously executing up to ten symmetrical self-renewal divisions. These mammary stem cells are phenotypically distinct from and give rise to mammary epithelial progenitor cells that produce adherent colonies in vitro. The mammary stem cells are also a rapidly cycling population in the normal adult and have molecular features indicative of a basal position in the mammary epithelium.
View Publication
产品类型:
产品号#:
产品名:
文献
Barbaric I et al. (DEC 2011)
Cryobiology 63 3 298--305
Pinacidil enhances survival of cryopreserved human embryonic stem cells.
Human embryonic stem cells (hESCs) can be maintained as undifferentiated cells in vitro and induced to differentiate into a variety of somatic cell types. Thus,hESCs provide a source of differentiated cell types that could be used to replace diseased cells of a tissue. The efficient cryopreservation of hESCs is important for establishing effective stem cell banks,however,conventional slow freezing methods usually lead to low rates of recovery after thawing cells and their replating in culture. We have established a method for recovering cryopreserved hESCs using pinacidil and compared it to a method that employs the ROCK inhibitor Y-27632. We show that pinacidil is similar to Y-27632 in promoting survival of hESCs after cryopreservation. The cells exhibited normal hESC morphology,retained a normal karyotype,and expressed characteristic hESC markers (OCT4,SSEA3,SSEA4 and TRA-1-60). Moreover,the cells retained the capacity to differentiate into derivatives of all three embryonic germ layers as demonstrated by differentiation through embryoid body formation. Pinacidil has been used for many years as a vasodilator drug to treat hypertension and its manufacture and traceability are well defined. It is also considerably cheaper than Y-27632. Thus,the use of pinacidil offers an efficient method for recovery of cryopreserved dissociated human ES cells.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Meng G and Rancourt DE (JAN 2012)
Methods in molecular biology (Clifton,N.J.) 873 69--80
Derivation and maintenance of undifferentiated human embryonic stem cells
Human embryonic stem cells (hESCs) are self-renewing,pluripotent cells derived from the inner cell mass of blastocysts,early-stage embryos,or blastomeres. hESCs can be propagated indefinitely in an undifferentiated state in vitro and have the ability to differentiate into all cell types of the body. Therefore,these cells can potentially provide an unlimited source of cells and hold promise for transplantation therapy,regenerative medicine,drug screening and discovery,and basic scientific research. Surplus human embryos donated for hESC derivation are extremely valuable,and inefficient derivation of hESCs would be a terrible waste of human embryos. Here,we describe a method for isolating hESC lines from human blastocysts with high efficiency. We also describe the methods for excising differentiated areas from partially differentiated hESC colonies and re-isolating undifferentiated hESCs from extremely differentiated hESC colonies.
View Publication
产品类型:
产品号#:
07923
85850
85857
产品名:
Dispase (1 U/mL)
mTeSR™1
mTeSR™1
文献
Moore JC (JAN 2013)
997 35--43
Generation of Human-Induced Pluripotent Stem Cells by Lentiviral Transduction
Human somatic cells can be reprogrammed to the pluripotent state to become human-induced pluripotent stem cells (hiPSC). This reprogramming is achieved by activating signaling pathways that are expressed during early development. These pathways can be induced by ectopic expression of four transcription factors—Oct4,Sox2,Klf4,and c-Myc. Although there are many ways to deliver these transcription factors into the somatic cells,this chapter will provide protocols that can be used to generate hiPSC from lentiviruses.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Sagi I et al. (NOV 2016)
Nature protocols 11 11 2274--2286
Identification and propagation of haploid human pluripotent stem cells.
Haploid human pluripotent stem cells (PSCs) integrate haploidy and pluripotency,providing a novel system for functional genomics and developmental research in humans. We have recently derived haploid human embryonic stem cells (ESCs) by parthenogenesis and demonstrated their wide differentiation potential and applicability for genetic screening. Because haploid cells can spontaneously become diploid,their enrichment at an early passage is key for successful derivation. In this protocol,we describe two methodologies,namely metaphase spread analysis and cell sorting,for the identification of haploid human cells within parthenogenetic ESC lines. The cell sorting approach also enables the isolation of haploid cells at low percentages,as well as the maintenance of highly enriched haploid ESC lines throughout passaging. The isolation of essentially pure populations of haploid human ESCs by this protocol requires basic PSC culture expertise and can be achieved within 4-6 weeks.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
T. Pattarabanjird et al. (apr 2022)
Circulation research 130 7 981--993
B-1b Cells Possess Unique bHLH-Driven P62-Dependent Self-Renewal and Atheroprotection.
BACKGROUND B1a and B1b lymphocytes produce IgM that inactivates oxidation-specific epitopes (IgMOSE) on LDL (low-density lipoprotein) and protects against atherosclerosis. Loss of ID3 (inhibitor of differentiation 3) in B cells selectively promotes B1b but not B1a cell numbers,leading to higher IgMOSE production and reduction in atherosclerotic plaque formation. Yet,the mechanism underlying this regulation remains unexplored. METHODS Bulk RNA sequencing was utilized to identify differentially expressed genes in B1a and B1b cells from Id3KO and Id3WT mice. CRISPR/Cas9 and lentiviral genome editing coupled with adoptive transfer were used to identify key Id3-dependent signaling pathways regulating B1b cell proliferation and the impact on atherosclerosis. Biospecimens from humans with advanced coronary artery disease imaging were analyzed to translate murine findings to human subjects with coronary artery disease. RESULTS Through RNA sequencing,P62 was found to be enriched in Id3KO B1b cells. Further in vitro characterization reveals a novel role for P62 in mediating BAFF (B-cell activating factor)-induced B1b cell proliferation through interacting with TRAF6 (tumor necrosis factor receptor 6) and activating NF-$\kappa$B (nuclear factor kappa B),leading to subsequent C-MYC (C-myelocytomatosis) upregulation. Promoter-reporter assays reveal that Id3 inhibits the E2A protein from activating the P62 promoter. Mice adoptively transferred with B1 cells overexpressing P62 exhibited an increase in B1b cell number and IgMOSE levels and were protected against atherosclerosis. Consistent with murine mechanistic findings,P62 expression in human B1 cells was significantly higher in subjects harboring a function-impairing single nucleotide polymorphism (SNP) at rs11574 position in the ID3 gene and directly correlated with plasma IgMOSE levels. CONCLUSIONS This study unveils a novel role for P62 in driving BAFF-induced B1b cell proliferation and IgMOSE production to attenuate diet-induced atherosclerosis. Results identify a direct role for Id3 in antagonizing E2A from activating the p62 promoter. Moreover,analysis of putative human B1 cells also implicates these pathways in coronary artery disease subjects,suggesting P62 as a new immunomodulatory target for treating atherosclerosis.
View Publication
产品类型:
产品号#:
19554
产品名:
EasySep™人Pan-B细胞富集试剂盒
文献
Carpenter L et al. (APR 2012)
Stem cells and development 21 6 977--86
Efficient differentiation of human induced pluripotent stem cells generates cardiac cells that provide protection following myocardial infarction in the rat.
Induced pluripotent stem (iPS) cells are being used increasingly to complement their embryonic counterparts to understand and develop the therapeutic potential of pluripotent cells. Our objectives were to identify an efficient cardiac differentiation protocol for human iPS cells as monolayers,and demonstrate that the resulting cardiac progenitors could provide a therapeutic benefit in a rodent model of myocardial infarction. Herein,we describe a 14-day protocol for efficient cardiac differentiation of human iPS cells as a monolayer,which routinely yielded a mixed population in which over 50% were cardiomyocytes,endothelium,or smooth muscle cells. When differentiating,cardiac progenitors from day 6 of this protocol were injected into the peri-infarct region of the rat heart; after coronary artery ligation and reperfusion,we were able to show that human iPS cell-derived cardiac progenitor cells engrafted,differentiated into cardiomyocytes and smooth muscle,and persisted for at least 10 weeks postinfarct. Hearts injected with iPS-derived cells showed a nonsignificant trend toward protection from decline in function after myocardial infarction,as assessed by magnetic resonance imaging at 10 weeks,such that the ejection fraction at 10 weeks in iPS treated hearts was 62%±4%,compared to that of control infarcted hearts at 45%±9% (Ptextless0.2). In conclusion,we demonstrated efficient cardiac differentiation of human iPS cells that gave rise to progenitors that were retained within the infarcted rat heart,and reduced remodeling of the heart after ischemic damage.
View Publication