LNGFR+THY-1+ human pluripotent stem cell-derived neural crest-like cells have the potential to develop into mesenchymal stem cells
Mesenchymal stem cells (MSCs) are defined as non-hematopoietic,plastic-adherent,self-renewing cells that are capable of tri-lineage differentiation into bone,cartilage or fat in vitro. Thus,MSCs are promising candidates for cell-based medicine. However,classifications of MSCs have been defined retrospectively; moreover,this conventional criterion may be inaccurate due to contamination with other hematopoietic lineage cells. Human MSCs can be enriched by selection for LNGFR and THY-1,and this population may be analogous to murine PDGFR??+Sca-1+ cells,which are developmentally derived from neural crest cells (NCCs). Murine NCCs were labeled by fluorescence,which provided definitive proof of neural crest lineage,however,technical considerations prevent the use of a similar approach to determine the origin of human LNGFR+THY-1+ MSCs. To further clarify the origin of human MSCs,human embryonic stem cells (ESCs) and human induced pluripotent stem cells (iPSCs) were used in this study. Under culture conditions required for the induction of neural crest cells,human ESCs and iPSCs-derived cells highly expressed LNGFR and THY-1. These LNGFR+THY-1+ neural crest-like cells,designated as LT-NCLCs,showed a strong potential to differentiate into both mesenchymal and neural crest lineages. LT-NCLCs proliferated to form colonies and actively migrated in response to serum concentration. Furthermore,we transplanted LT-NCLCs into chick embryos,and traced their potential for survival,migration and differentiation in the host environment. These results suggest that LNGFR+THY-1+ cells identified following NCLC induction from ESCs/iPSCs shared similar potentials with multipotent MSCs.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Xi J et al. (JAN 2010)
PLoS ONE 5 12 e14457
Human fetal liver stromal cells that overexpress bFGF support growth and maintenance of human embryonic stem cells
In guiding hES cell technology toward the clinic,one key issue to be addressed is to culture and maintain hES cells much more safely and economically in large scale. In order to avoid using mouse embryonic fibroblasts (MEFs) we isolated human fetal liver stromal cells (hFLSCs) from 14 weeks human fetal liver as new human feeder cells. hFLSCs feeders could maintain hES cells for 15 passages (about 100 days). Basic fibroblast growth factor (bFGF) is known to play an important role in promoting self-renewal of human embryonic stem (hES) cells. So,we established transgenic hFLSCs that stably express bFGF by lentiviral vectors. These transgenic human feeder cells--bFGF-hFLSCs maintained the properties of H9 hES cells without supplementing with any exogenous growth factors. H9 hES cells culturing under these conditions maintained all hES cell features after prolonged culture,including the developmental potential to differentiate into representative tissues of all three embryonic germ layers,unlimited and undifferentiated proliferative ability,and maintenance of normal karyotype. Our results demonstrated that bFGF-hFLSCs feeder cells were central to establishing the signaling network among bFGF,insulin-like growth factor 2 (IGF-2),and transforming growth factor β (TGF-β),thereby providing the framework in which hES cells were instructed to self-renew or to differentiate. We also found that the conditioned medium of bFGF-hFLSCs could maintain the H9 hES cells under feeder-free conditions without supplementing with bFGF. Taken together,bFGF-hFLSCs had great potential as feeders for maintaining pluripotent hES cell lines more safely and economically.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Kandasamy M et al. (MAR 2017)
Cell and Tissue Research 368 3 531--549
Glycoconjugates reveal diversity of human neural stem cells (hNSCs) derived from human induced pluripotent stem cells (hiPSCs)
Neural stem cells (NSCs) have the ability to self-renew and to differentiate into various cell types of the central nervous system. This potential can be recapitulated by human induced pluripotent stem cells (hiPSCs) in vitro. The differentiation capacity of hiPSCs is characterized by several stages with distinct morphologies and the expression of various marker molecules. We used the monoclonal antibodies (mAbs) 487(LeX),5750(LeX) and 473HD to analyze the expression pattern of particular carbohydrate motifs as potential markers at six differentiation stages of hiPSCs. Mouse ESCs were used as a comparison. At the pluripotent stage,487(LeX)-,5750(LeX)- and 473HD-related glycans were differently expressed. Later,cells of the three germ layers in embryoid bodies (hEBs) and,even after neuralization of hEBs,subpopulations of cells were labeled with these surface antibodies. At the human rosette-stage of NSCs (hR-NSC),LeX- and 473HD-related epitopes showed antibody-specific expression patterns. We also found evidence that these surface antibodies could be used to distinguish the hR-NSCs from the hSR-NSCs stages. Characterization of hNSCs(FGF-2/EGF) derived from hSR-NSCs revealed that both LeX antibodies and the 473HD antibody labeled subpopulations of hNSCs(FGF-2/EGF). Finally,we identified potential LeX carrier molecules that were spatiotemporally regulated in early and late stages of differentiation. Our study provides new insights into the regulation of glycoconjugates during early human stem cell development. The mAbs 487(LeX),5750(LeX) and 473HD are promising tools for identifying distinct stages during neural differentiation.
View Publication
产品类型:
产品号#:
05832
85850
85857
产品名:
STEMdiff™ 神经花环选择试剂
mTeSR™1
mTeSR™1
文献
Huat T et al. (JUL 2014)
BMC Neuroscience 15 1 91
IGF-1 enhances cell proliferation and survival during early differentiation of mesenchymal stem cells to neural progenitor-like cells
BACKGROUND There has been increasing interest recently in the plasticity of mesenchymal stem cells (MSCs) and their potential to differentiate into neural lineages. To unravel the roles and effects of different growth factors in the differentiation of MSCs into neural lineages,we have differentiated MSCs into neural lineages using different combinations of growth factors. Based on previous studies of the roles of insulin-like growth factor 1 (IGF-1) in neural stem cell isolation in the laboratory,we hypothesized that IGF-1 can enhance proliferation and reduce apoptosis in neural progenitor-like cells (NPCs) during differentiation of MSCs into NCPs.We induced MSCs differentiation under four different combinations of growth factors: (A) EGF%+%bFGF,(B) EGF%+%bFGF%+%IGF-1,(C) EGF%+%bFGF%+%LIF,(D) EGF%+%bFGF%+%BDNF,and (E) without growth factors,as a negative control. The neurospheres formed were characterized by immunofluorescence staining against nestin,and the expression was measured by flow cytometry. Cell proliferation and apoptosis were also studied by MTS and Annexin V assay,respectively,at three different time intervals (24 hr,3 days,and 5 days). The neurospheres formed in the four groups were then terminally differentiated into neuron and glial cells. RESULTS The four derived NPCs showed a significantly higher expression of nestin than was shown by the negative control. Among the groups treated with growth factors,NPCs treated with IGF-1 showed the highest expression of nestin. Furthermore,NPCs derived using IGF-1 exhibited the highest cell proliferation and cell survival among the treated groups. The NPCs derived from IGF-1 treatment also resulted in a better yield after the terminal differentiation into neurons and glial cells than that of the other treated groups. CONCLUSIONS Our results suggested that IGF-1 has a crucial role in the differentiation of MSCs into neuronal lineage by enhancing the proliferation and reducing the apoptosis in the NPCs. This information will be beneficial in the long run for improving both cell-based and cell-free therapy for neurodegenerative diseases.
View Publication
产品类型:
产品号#:
产品名:
文献
Kasbia G et al. (NOV 2008)
Transfusion 48 11 2421--8
Reduced hemoglobin on day of peripheral blood progenitor cell collection is associated with low graft content of vascular progenitors and increased toxicity after autologous hematopoietic stem cell transplantation.
BACKGROUND: Tissue damage after hematopoietic stem cell transplantation (HSCT) occurs as a result of high-dose chemotherapy and radiation. The aim was to determine the importance of pretransplant anemia on toxicity and red blood cell (RBC) transfusion requirements after autologous HSCT. STUDY DESIGN AND METHODS: A total of 350 patients undergoing autologous HSCT were included in the analysis. Patient factors and pretransplant laboratory values of possible relevance were assessed in multivariate regression analysis. RESULTS: Reduced hemoglobin (Hb) on the first day of peripheral blood progenitor cell (PBPC) collection was significantly associated with increased organ toxicity after HSCT,as measured by the Seattle criteria. Lower Hb levels at baseline before transplantation,but not at PBPC collection,were significantly associated with increased RBC transfusion requirements. In a second cohort of 28 patients,higher Hb levels on the day of PBPC collection were significantly associated with increased levels of endothelial-like vascular progenitor cells in PBPC grafts. CONCLUSION: Our observations suggest that higher Hb levels on the day of PBPC collection may be a marker of reduced toxicity associated with HSCT and increased vascular progenitors in PBPC collections. Further,baseline anemia before transplant may reflect an unfavorable hematopoietic microenvironment that leads to increased RBC transfusion requirements.
View Publication
产品类型:
产品号#:
产品名:
文献
Todaro M et al. (JUN 2010)
Gastroenterology 138 6 2151--62
Colon cancer stem cells: promise of targeted therapy.
First developed for hematologic disorders,the concept of cancer stem cells (CSCs) was expanded to solid tumors,including colorectal cancer (CRC). The traditional model of colon carcinogenesis includes several steps that occur via mutational activation of oncogenes and inactivation of tumor suppressor genes. Intestinal epithelial cells exist for a shorter amount of time than that required to accumulate tumor-inducing genetic changes,so researchers have investigated the concept that CRC arises from the long-lived stem cells,rather than from the differentiated epithelial cells. Colon CSCs were originally identified through the expression of the CD133 glycoprotein using an antibody directed to its epitope AC133. It is not clear if CD133 is a marker of colon CSCs-other cell surface markers,such as epithelial-specific antigen,CD44,CD166,Musashi-1,CD29,CD24,leucine-rich repeat-containing G-protein-coupled receptor 5,and aldehyde dehydrogenase 1,have been proposed. In addition to initiating and sustaining tumor growth,CSCs are believed to mediate cancer relapse after chemotherapy. How can we identify and analyze colon CSCs and what agents are being designed to kill this chemotherapy-refractory population?
View Publication
产品类型:
产品号#:
01700
01705
01702
产品名:
ALDEFLUOR™工具
ALDEFLUOR™DEAB试剂
ALDEFLUOR™测定缓冲液
文献
Piva M et al. (JAN 2014)
EMBO molecular medicine 6 1 66--79
Sox2 promotes tamoxifen resistance in breast cancer cells.
Development of resistance to therapy continues to be a serious clinical problem in breast cancer management. Cancer stem/progenitor cells have been shown to play roles in resistance to chemo�? and radiotherapy. Here,we examined their role in the development of resistance to the oestrogen receptor antagonist tamoxifen. Tamoxifen�?resistant cells were enriched for stem/progenitors and expressed high levels of the stem cell marker Sox2. Silencing of the SOX2 gene reduced the size of the stem/progenitor cell population and restored sensitivity to tamoxifen. Conversely,ectopic expression of Sox2 reduced tamoxifen sensitivity in vitro and in vivo. Gene expression profiling revealed activation of the Wnt signalling pathway in Sox2�?expressing cells,and inhibition of Wnt signalling sensitized resistant cells to tamoxifen. Examination of patient tumours indicated that Sox2 levels are higher in patients after endocrine therapy failure,and also in the primary tumours of these patients,compared to those of responders. Together,these results suggest that development of tamoxifen resistance is driven by Sox2�?dependent activation of Wnt signalling in cancer stem/progenitor cells.
View Publication
产品类型:
产品号#:
01700
01705
产品名:
ALDEFLUOR™工具
ALDEFLUOR™DEAB试剂
文献
Seeger FH et al. (MAR 2005)
Circulation 111 9 1184--91
p38 mitogen-activated protein kinase downregulates endothelial progenitor cells.
BACKGROUND Transplantation of endothelial progenitor cells (EPCs) improves neovascularization after ischemia,but patients with coronary artery disease (CAD) or diabetes mellitus show a reduced number of EPCs and impaired functional activity. Therefore,we investigated the effects of risk factors,such as glucose and TNF-alpha,on the number of EPCs in vitro to elucidate the underlying mechanisms. METHODS AND RESULTS EPCs of patients or healthy subjects were isolated from peripheral blood. Incubation with glucose or TNF-alpha dose-dependently reduced the number of EPCs (79.9+/-1.3% and 74.3+/-8.1% of control; Ptextless0.05,respectively). This reduction was not caused by apoptosis. TNF-alpha and glucose induced a dose- and time-dependent activation of the p38 MAP kinase,the downstream kinase mitogen- and stress-activated kinase 1,and the transcription factor cAMP-responsive element-binding protein (CREB),in EPCs. Moreover,EPCs from CAD patients had significantly higher basal p38-phosphorylation levels (1.83+/-0.2-fold increase; Ptextless0.05) compared with healthy subjects. The inhibition of the p38-kinase by SB203580 or infection with a dominant negative p38 kinase adenovirus significantly increased basal number of EPCs (136.7+/-6.3% and 142.9+/-18% versus control,respectively). Likewise,ex vivo cultivation of EPCs from patients with CAD with SB203580 significantly increased the number of EPCs and partially reversed the impaired capacity for neovascularization of EPCs in vivo (relative blood flow: 0.40+/-0.03 versus 0.64+/-0.08,Ptextless0.05). The increased numbers of EPCs by SB203580 were associated with an augmentation of EPC proliferation and a reduction of cells expressing the monocytic marker proteins CD14 and CD64,suggesting that p38 regulates proliferation and differentiation events. CONCLUSIONS These results demonstrate that p38 MAP kinase plays a pivotal role in the signal transduction pathways regulating the number of EPCs ex vivo. SB203580 can prevent the negative effects of TNF-alpha and glucose on the number of EPCs and may be useful to improve the number of EPCs for potential cell therapy.
View Publication
产品类型:
产品号#:
72222
产品名:
SB203580 (Hydrochloride)
文献
Nie Y et al. (JAN 2014)
PLoS ONE 9 1 e88012
Scalable passaging of adherent human pluripotent stem cells
Current laboratory methods used to passage adherent human pluripotent stem cells (hPSCs) are labor intensive,result in reduced cell viability and are incompatible with larger scale production necessary for many clinical applications. To meet the current demand for hPSCs,we have developed a new non-enzymatic passaging method using sodium citrate. Sodium citrate,formulated as a hypertonic solution,gently and efficiently detaches adherent cultures of hPSCs as small multicellular aggregates with minimal manual intervention. These multicellular aggregates are easily and reproducibly recovered in calcium-containing medium,retain a high post-detachment cell viability of 97%±1% and readily attach to fresh substrates. Together,this significantly reduces the time required to expand hPSCs as high quality adherent cultures. Cells subcultured for 25 passages using this novel sodium citrate passaging solution exhibit characteristic hPSC morphology,high levels (textgreater80%) of pluripotency markers OCT4,SSEA-4,TRA-1-60 andTRA-1-81,a normal G-banded karyotype and the ability to differentiate into cells representing all three germ layers,both in vivo and in vitro.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
T. Kwok et al. ( 2022)
Frontiers in aging 3 838943
Age-Associated Changes to Lymph Node Fibroblastic Reticular Cells.
The decreased proportion of antigen-inexperienced,na{\{i}}ve T cells is a hallmark of aging in both humans and mice and contributes to reduced immune responses particularly against novel and re-emerging pathogens. Na{\"{i}}ve T cells depend on survival signals received during their circulation among the lymph nodes by direct contacts with stroma in particular fibroblastic reticular cells. Macroscopic changes to the architecture of the lymph nodes have been described but it is unclear how lymph node stroma are altered with age and whether these changes contribute to reduced na{\"{i}}ve T cell maintenance. Here using 2-photon microscopy we determined that the aged lymph node displayed increased fibrosis and correspondingly that na{\"{i}}ve T-cell motility was impaired in the aged lymph node especially in proximity to fibrotic deposition. Functionally adoptively transferred young na{\"{i}}ve T-cells exhibited reduced homeostatic turnover in aged hosts supporting the role of T cell-extrinsic mechanisms that regulate their survival. Further we determined that early development of resident fibroblastic reticular cells was impaired which may correlate to the declining levels of na{\"{i}}ve T-cell homeostatic factors observed in aged lymph nodes. Thus our study addresses the controversy as to whether aging impacts the composition lymph node stroma and supports a model in which impaired differentiation of lymph node fibroblasts and increased fibrosis inhibits the interactions necessary for na{\"{i}}ve T cell homeostasis."
View Publication
产品类型:
产品号#:
19258
产品名:
EasySep™人Naïve CD8+ T细胞分选试剂盒
文献
Akhmetshina A et al. ( 2008)
FASEB journal : official publication of the Federation of American Societies for Experimental Biology 22 7 2214--2222
Dual inhibition of c-abl and PDGF receptor signaling by dasatinib and nilotinib for the treatment of dermal fibrosis.
Abelson kinase (c-abl) and platelet-derived growth factor (PDGF) are key players in the pathogenesis of systemic sclerosis (SSc). The aim of the present study was to evaluate the antifibrotic potential of dasatinib and nilotinib,2 novel inhibitors of c-abl and PDGF,which are well tolerated and have recently been approved. Dasatinib and nilotinib dose-dependently reduced the mRNA and protein levels of extracellular matrix proteins in human stimulated dermal fibroblasts from SSc patients (IC(50) of 0.5-2.0 nM for dasatinib and 0.8-2.5 nM for nilotinib). In a mouse model of bleomycin-induced dermal fibrosis,dasatinib and nilotinib potently reduced the dermal thickness,the number of myofibroblasts,and the collagen content of the skin in a dose-dependent manner at well-tolerated doses. These data indicate that dasatinib and nilotinib potently inhibit the synthesis of extracellular matrix in vitro and in vivo at biologically relevant concentrations. Thus,we provide the first evidence that dasatinib and nilotinib might be promising drugs for the treatment of patients with SSc.
View Publication
产品类型:
产品号#:
73082
73084
产品名:
达沙替尼
达沙替尼
文献
Uitdehaag JCM et al. ( 2014)
PloS one 9 3 e92146
Comparison of the cancer gene targeting and biochemical selectivities of all targeted kinase inhibitors approved for clinical use.
The anti-proliferative activities of all twenty-five targeted kinase inhibitor drugs that are in clinical use were measured in two large assay panels: (1) a panel of proliferation assays of forty-four human cancer cell lines from diverse tumour tissue origins; and (2) a panel of more than 300 kinase enzyme activity assays. This study provides a head-on comparison of all kinase inhibitor drugs in use (status Nov. 2013),and for six of these drugs,the first kinome profiling data in the public domain. Correlation of drug activities with cancer gene mutations revealed novel drug sensitivity markers,suggesting that cancers dependent on mutant CTNNB1 will respond to trametinib and other MEK inhibitors,and cancers dependent on SMAD4 to small molecule EGFR inhibitor drugs. Comparison of cellular targeting efficacies reveals the most targeted inhibitors for EGFR,ABL1 and BRAF(V600E)-driven cell growth,and demonstrates that the best targeted agents combine high biochemical potency with good selectivity. For ABL1 inhibitors,we computationally deduce optimized kinase profiles for use in a next generation of drugs. Our study shows the power of combining biochemical and cellular profiling data in the evaluation of kinase inhibitor drug action.
View Publication