Wunderlich M et al. (SEP 2006)
Blood 108 5 1690--7
Human CD34+ cells expressing the inv(16) fusion protein exhibit a myelomonocytic phenotype with greatly enhanced proliferative ability.
The t(16:16) and inv(16) are associated with FAB M4Eo myeloid leukemias and result in fusion of the CBFB gene to the MYH11 gene (encoding smooth muscle myosin heavy chain [SMMHC]). Knockout of CBFbeta causes embryonic lethality due to lack of definitive hematopoiesis. Although knock-in of CBFB-MYH11 is not sufficient to cause disease,expression increases the incidence of leukemia when combined with cooperating events. Although mouse models are valuable tools in the study of leukemogenesis,little is known about the contribution of CBFbeta-SMMHC to human hematopoietic stem and progenitor cell self-renewal. We introduced the CBFbeta-MYH11 cDNA into human CD34+ cells via retroviral transduction. Transduced cells displayed an initial repression of progenitor activity but eventually dominated the culture,resulting in the proliferation of clonal populations for up to 7 months. Long-term cultures displayed a myelomonocytic morphology while retaining multilineage progenitor activity and engraftment in NOD/SCID-B2M-/- mice. Progenitor cells from long-term cultures showed altered expression of genes defining inv(16) identified in microarray studies of human patient samples. This system will be useful in examining the effects of CBFbeta-SMMHC on gene expression in the human preleukemic cell,in characterizing the effect of this oncogene on human stem cell biology,and in defining its contribution to the development of leukemia.
View Publication
产品类型:
产品号#:
04100
产品名:
MethoCult™H4100
文献
Wang M et al. (MAR 2015)
ACS applied materials & interfaces 7 8 4560--4572
In Vitro Culture and Directed Osteogenic Differentiation of Human Pluripotent Stem Cells on Peptides-Decorated Two Dimensional Microenvironment
Human pluripotent stem cells (hPSCs) are a promising cell source with pluripotency and capacity to differentiate into all human somatic cell types. Designing simple and safe biomaterials with an innate ability to induce osteoblastic lineage from hPSCs is desirable to realize their clinical adoption in bone regenerative medicine. To address the issue,here we developed a fully defined synthetic peptides-decorated two dimensional (2D) microenvironment assisted via polydopamine (pDA) chemistry and subsequent carboxymethyl chitosan (CMC) grafting to enhance the culture and osteogenic potential of hPSCs in vitro. The hPSCs including human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) were successfully cultured on the peptides-decorated surface without Matrigel- and ECM protein-coating and underwent promoted osteogenic differentiation in vitro,determined from the alkaline phosphate (ALP) activity,gene expression,and protein production as well as calcium deposit amount. It was found that directed osteogenic differentiation of hPSCs could be achieved through a peptides-decorated niche. This chemical-defined and safe 2D microenvironment which facilitates proliferation and osteo-differentiation of hPSCs,not only helps to accelerate the translational perspectives of hPSCs,but also provides tissue-specific functions such as directing stem cell differentiation commitment,having great potential in bone tissue engineering and presenting new avenues for bone regenerative medicine.
View Publication
产品类型:
产品号#:
07920
85850
85857
产品名:
ACCUTASE™
mTeSR™1
mTeSR™1
文献
Szewczyk K et al. (JUN 2016)
Human immunology 77 6 449--55
Flow cytometry crossmatch reactivity with pronase-treated T cells induced by non-HLA autoantibodies in human immunodeficiency virus-infected patients.
Pronase treatment is used in the flow cytometry crossmatch (FCXM) to prevent nonspecific antibody binding on B cells. However,we have observed unexpected positive results with pronase-treated T cells in human immunodeficiency virus (HIV)-infected patients. In this study,25 HIV-infected patients without HLA antibodies were tested with pronase-treated and nontreated cells. HIV-positive sera were pretreated with reducing agents and preabsorbed with pronase-treated and nontreated T or B cells before crossmatching. All patients displayed FCXM reactivity with pronase-treated T cells but not with nontreated T cells. None of the patients exhibited FCXM reactivity with pronase-treated and nontreated B cells. These patients displayed FCXM reactivity with pronase-treated CD4+ and CD8+ T cells but not with their nontreated counterparts. Preabsorption with pronase-treated T cells reduced the T cell FCXM reactivity. Preabsorption with pronase-treated B cells or nontreated T and B cells did not have any effect on the T cell FCXM reactivity. Pretreatment with reducing agents did not affect the T cell FCXM reactivity. 15 of 21 HIV-infected kidney allograft recipients with pronase-treated T cell FCXM reactivity display long-term graft survival (1193±631days). These data indicate that HIV-infected patients have nondeleterious autoantibodies recognizing cryptic epitopes exposed by pronase on T cells.
View Publication
产品类型:
产品号#:
17952
17952RF
17953
17953RF
21000
20119
20155
产品名:
EasySep™人CD4+ T细胞分选试剂盒
RoboSep™ 人CD4+ T细胞分选试剂盒
EasySep™人CD8+ T细胞分选试剂盒
RoboSep™ 人CD8+ T细胞分选试剂盒
RoboSep™- S
RoboSep™ 吸头组件抛光剂
RoboSep™分选试管套装(9个塑料管+吸头保护器)
文献
Werden SJ and McFadden G ( 2010)
Journal of virology 84 7 3287--3302
Pharmacological manipulation of the akt signaling pathway regulates myxoma virus replication and tropism in human cancer cells.
Viruses have evolved an assortment of mechanisms for regulating the Akt signaling pathway to establish a cellular environment more favorable for viral replication. Myxoma virus (MYXV) is a rabbit-specific poxvirus that encodes many immunomodulatory factors,including an ankyrin repeat-containing host range protein termed M-T5 that functions to regulate tropism of MYXV for rabbit lymphocytes and certain human cancer cells. MYXV permissiveness in these human cancer cells is dependent upon the direct interaction between M-T5 and Akt,which has been shown to induce the kinase activity of Akt. In this study,an array of compounds that selectively manipulate Akt signaling was screened and we show that only a subset of Akt inhibitors significantly decreased the ability of MYXV to replicate in previously permissive human cancer cells. Furthermore,reduced viral replication efficiency was correlated with lower levels of phosphorylated Akt. In contrast,the PP2A-specific phosphatase inhibitor okadaic acid promoted increased Akt kinase activation and rescued MYXV replication in human cancer cells that did not previously support viral replication. Finally,phosphorylation of Akt at residue Thr308 was shown to dictate the physical interaction between Akt and M-T5,which then leads to phosphorylation of Ser473 and permits productive MYXV replication in these human cancer cells. The results of this study further characterize the mechanism by which M-T5 exploits the Akt signaling cascade and affirms this interaction as a major tropism determinant that regulates the replication efficiency of MYXV in human cancer cells.
View Publication
产品类型:
产品号#:
72952
产品名:
AKT抑制剂X (Hydrochloride)
文献
Billerbeck E et al. (FEB 2010)
Proceedings of the National Academy of Sciences of the United States of America 107 7 3006--11
Analysis of CD161 expression on human CD8+ T cells defines a distinct functional subset with tissue-homing properties.
CD8(+) T lymphocytes play a key role in host defense,in particular against important persistent viruses,although the critical functional properties of such cells in tissue are not fully defined. We have previously observed that CD8(+) T cells specific for tissue-localized viruses such as hepatitis C virus express high levels of the C-type lectin CD161. To explore the significance of this,we examined CD8(+)CD161(+) T cells in healthy donors and those with hepatitis C virus and defined a population of CD8(+) T cells with distinct homing and functional properties. These cells express high levels of CD161 and a pattern of molecules consistent with type 17 differentiation,including cytokines (e.g.,IL-17,IL-22),transcription factors (e.g.,retinoic acid-related orphan receptor gamma-t,P = 6 x 10(-9); RUNX2,P = 0.004),cytokine receptors (e.g.,IL-23R,P = 2 x 10(-7); IL-18 receptor,P = 4 x 10(-6)),and chemokine receptors (e.g.,CCR6,P = 3 x 10(-8); CXCR6,P = 3 x 10(-7); CCR2,P = 4 x 10(-7)). CD161(+)CD8(+) T cells were markedly enriched in tissue samples and coexpressed IL-17 with high levels of IFN-gamma and/or IL-22. The levels of polyfunctional cells in tissue was most marked in those with mild disease (P = 0.0006). These data define a T cell lineage that is present already in cord blood and represents as many as one in six circulating CD8(+) T cells in normal humans and a substantial fraction of tissue-infiltrating CD8(+) T cells in chronic inflammation. Such cells play a role in the pathogenesis of chronic hepatitis and arthritis and potentially in other infectious and inflammatory diseases of man.
View Publication
产品类型:
产品号#:
19053
19053RF
产品名:
EasySep™人CD8+ T细胞富集试剂盒
RoboSep™ 人CD8+ T细胞富集试剂盒含滤芯吸头
文献
Rao R et al. (APR 2012)
Molecular cancer therapeutics 11 4 973--983
Combination of pan-histone deacetylase inhibitor and autophagy inhibitor exerts superior efficacy against triple-negative human breast cancer cells.
Histone deacetylase (HDAC) inhibitors (HDI) induce endoplasmic reticulum (ER) stress and apoptosis,while promoting autophagy,which promotes cancer cell survival when apoptosis is compromised. Here,we determined the in vitro and in vivo activity of the combination of the pan-HDI panobinostat and the autophagy inhibitor chloroquine against human estrogen/progesterone receptor and HER2 (triple)-negative breast cancer (TNBC) cells. Treatment of MB-231 and SUM159PT cells with panobinostat disrupted the hsp90/histone deacetylase 6/HSF1/p97 complex,resulting in the upregulation of hsp. This was accompanied by the induction of enhanced autophagic flux as evidenced by increased expression of LC3B-II and the degradation of the autophagic substrate p62. Treatment with panobinostat also induced the accumulation and colocalization of p62 with LC3B-II in cytosolic foci as evidenced by immunofluorescent confocal microscopy. Inhibition of panobinostat-induced autophagic flux by chloroquine markedly induced the accumulation of polyubiquitylated proteins and p62,caused synergistic cell death of MB-231 and SUM159PT cells,and inhibited mammosphere formation in MB-231 cells,compared with treatment with each agent alone. Finally,in mouse mammary fat pad xenografts of MB-231 cells,a tumor size-dependent induction of heat shock response,ER stress and autophagy were observed. Cotreatment with panobinostat and chloroquine resulted in reduced tumor burden and increased the survival of MB-231 breast cancer xenografts. Collectively,our findings show that cotreatment with an autophagy inhibitor and pan-HDI,for example,chloroquine and panobinostat results in accumulation of toxic polyubiquitylated proteins,exerts superior inhibitory effects on TNBC cell growth,and increases the survival of TNBC xenografts.
View Publication
产品类型:
产品号#:
05620
产品名:
MammoCult™ 人源培养基套装
文献
Ben-David U et al. (FEB 2013)
Cell stem cell 12 2 167--179
Selective elimination of human pluripotent stem cells by an oleate synthesis inhibitor discovered in a high-throughput screen
The use of human pluripotent stem cells (hPSCs) in cell therapy is hindered by the tumorigenic risk from residual undifferentiated cells. Here we performed a high-throughput screen of over 52,000 small molecules and identified 15 pluripotent cell-specific inhibitors (PluriSIns),nine of which share a common structural moiety. The PluriSIns selectively eliminated hPSCs while sparing a large array of progenitor and differentiated cells. Cellular and molecular analyses demonstrated that the most selective compound,PluriSIn 1,induces ER stress,protein synthesis attenuation,and apoptosis in hPSCs. Close examination identified this molecule as an inhibitor of stearoyl-coA desaturase (SCD1),the key enzyme in oleic acid biosynthesis,revealing a unique role for lipid metabolism in hPSCs. PluriSIn 1 was also cytotoxic to mouse blastocysts,indicating that the dependence on oleate is inherent to the pluripotent state. Finally,application of PluriSIn 1 prevented teratoma formation from tumorigenic undifferentiated cells. These findings should increase the safety of hPSC-based treatments. ?? 2013 Elsevier Inc.
View Publication
产品类型:
产品号#:
72822
85850
85857
产品名:
PluriSIn-1
mTeSR™1
mTeSR™1
文献
Zhu L et al. (OCT 2016)
The Journal of cell biology 215 2 187--202
The mitochondrial protein CHCHD2 primes the differentiation potential of human induced pluripotent stem cells to neuroectodermal lineages.
Human induced pluripotent stem cell (hiPSC) utility is limited by variations in the ability of these cells to undergo lineage-specific differentiation. We have undertaken a transcriptional comparison of human embryonic stem cell (hESC) lines and hiPSC lines and have shown that hiPSCs are inferior in their ability to undergo neuroectodermal differentiation. Among the differentially expressed candidates between hESCs and hiPSCs,we identified a mitochondrial protein,CHCHD2,whose expression seems to correlate with neuroectodermal differentiation potential of pluripotent stem cells. We provide evidence that hiPSC variability with respect to CHCHD2 expression and differentiation potential is caused by clonal variation during the reprogramming process and that CHCHD2 primes neuroectodermal differentiation of hESCs and hiPSCs by binding and sequestering SMAD4 to the mitochondria,resulting in suppression of the activity of the TGFβ signaling pathway. Using CHCHD2 as a marker for assessing and comparing the hiPSC clonal and/or line differentiation potential provides a tool for large scale differentiation and hiPSC banking studies.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
文献
S. Tsai et al. (MAR 2018)
BMC cancer 18 1 335
Development of primary human pancreatic cancer organoids, matched stromal and immune cells and 3D tumor microenvironment models.
BACKGROUND Patient-derived tumor models are the new standard for pre-clinical drug testing and biomarker discovery. However,the emerging technology of primary pancreatic cancer organoids has not yet been broadly implemented in research,and complex organotypic models using organoids in co-culture with stromal and immune cellular components of the tumor have yet to be established. In this study,our objective was to develop and characterize pancreatic cancer organoids and multi-cell type organotypic co-culture models to demonstrate their applicability to the study of pancreatic cancer. METHODS We employed organoid culture methods and flow cytometric,cytologic,immunofluorescent and immunohistochemical methods to develop and characterize patient-derived pancreatic cancer organoids and multi-cell type organotypic co-culture models of the tumor microenvironment. RESULTS We describe the culture and characterization of human pancreatic cancer organoids from resection,ascites and rapid autopsy sources and the derivation of adherent tumor cell monocultures and tumor-associated fibroblasts from these sources. Primary human organoids displayed tumor-like cellular morphology,tissue architecture and polarity in contrast to cell line spheroids,which formed homogenous,non-lumen forming spheres. Importantly,we demonstrate the construction of complex organotypic models of tumor,stromal and immune components of the tumor microenvironment. Activation of myofibroblast-like cancer associated fibroblasts and tumor-dependent lymphocyte infiltration were observed in these models. CONCLUSIONS These studies provide the first report of novel and disease-relevant 3D in-vitro models representing pancreatic tumor,stromal and immune components using primary organoid co-cultures representative of the tumor-microenvironment. These models promise to facilitate the study of tumor-stroma and tumor-immune interaction and may be valuable for the assessment of immunotherapeutics such as checkpoint inhibitors in the context of T-cell infiltration.
View Publication
产品类型:
产品号#:
06005
产品名:
IntestiCult™ 类器官生长培养基 (小鼠)
文献
Beltrami AP et al. (NOV 2007)
Blood 110 9 3438--46
Multipotent cells can be generated in vitro from several adult human organs (heart, liver, and bone marrow).
The aims of our study were to verify whether it was possible to generate in vitro,from different adult human tissues,a population of cells that behaved,in culture,as multipotent stem cells and if these latter shared common properties. To this purpose,we grew and cloned finite cell lines obtained from adult human liver,heart,and bone marrow and named them human multipotent adult stem cells (hMASCs). Cloned hMASCs,obtained from the 3 different tissues,expressed the pluripotent state-specific transcription factors Oct-4,NANOG,and REX1,displayed telomerase activity,and exhibited a wide range of differentiation potential,as shown both at a morphologic and functional level. hMASCs maintained a human diploid DNA content,and shared a common gene expression signature,compared with several somatic cell lines and irrespectively of the tissue of isolation. In particular,the pathways regulating stem cell self-renewal/maintenance,such as Wnt,Hedgehog,and Notch,were transcriptionally active. Our findings demonstrate that we have optimized an in vitro protocol to generate and expand cells from multiple organs that could be induced to acquire morphologic and functional features of mature cells even embryologically not related to the tissue of origin.
View Publication
产品类型:
产品号#:
05401
05402
05411
产品名:
MesenCult™ MSC 基础培养基(人)
MesenCult™ MSC 刺激补充剂(人)
MesenCult™ 增殖试剂盒(人)
文献
Lian X et al. (MAR 2013)
PLoS ONE 8 3 e60016
A Small Molecule Inhibitor of Src Family Kinases Promotes Simple Epithelial Differentiation of Human Pluripotent Stem Cells
Human pluripotent stem cells (hPSCs) provide unprecedented opportunities to study the earliest stages of human development in vitro and have the potential to provide unlimited new sources of cells for regenerative medicine. Although previous studies have reported cytokeratin 14+/p63+ keratinocyte generation from hPSCs,the multipotent progenitors of epithelial lineages have not been described and the developmental pathways regulating epithelial commitment remain largely unknown. Here we report membrane localization of β-catenin during retinoic acid (RA)--induced epithelial differentiation. In addition hPSC treatment with the Src family kinase inhibitor SU6656 modulated β-catenin localization and produced an enriched population of simple epithelial cells under defined culture conditions. SU6656 strongly upregulated expression of cytokeratins 18 and 8 (K18/K8),which are expressed in simple epithelial cells,while repressing expression of the pluripotency gene Oct4. This homogeneous population of K18+K8+Oct4- simple epithelial precursor cells can further differentiate into cells expressing keratinocyte or corneal-specific markers. These enriched hPSC-derived simple epithelial cells may provide a ready source for development and toxicology cell models and may serve as a progenitor for epithelial cell transplantation applications.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Lou Y-R et al. (FEB 2014)
Stem Cells and Development 23 4 380--392
The Use of Nanofibrillar Cellulose Hydrogel As a Flexible Three-Dimensional Model to Culture Human Pluripotent Stem Cells
Human embryonic stem cells and induced pluripotent stem cells have great potential in research and thera-pies. The current in vitro culture systems for human pluripotent stem cells (hPSCs) do not mimic the three-dimensional (3D) in vivo stem cell niche that transiently supports stem cell proliferation and is subject to changes which facilitate subsequent differentiation during development. Here,we demonstrate,for the first time,that a novel plant-derived nanofibrillar cellulose (NFC) hydrogel creates a flexible 3D environment for hPSC culture. The pluripotency of hPSCs cultured in the NFC hydrogel was maintained for 26 days as evidenced by the expression of OCT4,NANOG,and SSEA-4,in vitro embryoid body formation and in vivo teratoma formation. The use of a cellulose enzyme,cellulase,enables easy cell propagation in 3D culture as well as a shift between 3D and two-dimensional cultures. More importantly,the removal of the NFC hydrogel facilitates differentiation while retaining 3D cell organization. Thus,the NFC hydrogel represents a flexible,xeno-free 3D culture system that supports pluripotency and will be useful in hPSC-based drug research and regenerative medicine.
View Publication