Capoccia BJ et al. (MAY 2009)
Blood 113 21 5340--51
Revascularization of ischemic limbs after transplantation of human bone marrow cells with high aldehyde dehydrogenase activity.
The development of cell therapies to treat peripheral vascular disease has proven difficult because of the contribution of multiple cell types that coordinate revascularization. We characterized the vascular regenerative potential of transplanted human bone marrow (BM) cells purified by high aldehyde dehydrogenase (ALDH(hi)) activity,a progenitor cell function conserved between several lineages. BM ALDH(hi) cells were enriched for myelo-erythroid progenitors that produced multipotent hematopoietic reconstitution after transplantation and contained nonhematopoietic precursors that established colonies in mesenchymal-stromal and endothelial culture conditions. The regenerative capacity of human ALDH(hi) cells was assessed by intravenous transplantation into immune-deficient mice with limb ischemia induced by femoral artery ligation/transection. Compared with recipients injected with unpurified nucleated cells containing the equivalent of 2- to 4-fold more ALDH(hi) cells,mice transplanted with purified ALDH(hi) cells showed augmented recovery of perfusion and increased blood vessel density in ischemic limbs. ALDH(hi) cells transiently recruited to ischemic regions but did not significantly integrate into ischemic tissue,suggesting that transient ALDH(hi) cell engraftment stimulated endogenous revascularization. Thus,human BM ALDH(hi) cells represent a progenitor-enriched population of several cell lineages that improves perfusion in ischemic limbs after transplantation. These clinically relevant cells may prove useful in the treatment of critical ischemia in humans.
View Publication
产品类型:
产品号#:
01700
01705
01702
21000
20119
20155
产品名:
ALDEFLUOR™工具
ALDEFLUOR™DEAB试剂
ALDEFLUOR™测定缓冲液
RoboSep™- S
RoboSep™ 吸头组件抛光剂
RoboSep™分选试管套装(9个塑料管+吸头保护器)
文献
Arlt A et al. ( 2001)
Oncogene 20 7 859--868
Inhibition of NF-κB sensitizes human pancreatic carcinoma cells to apoptosis induced by etoposide (VP16) or doxorubicin
The transcription factor NF-kappaB has anti-apoptotic properties and may confer chemoresistance to cancer cells. Here,we describe human pancreatic carcinoma cell lines that differ in the responsiveness to the topoisomerase-2 inhibitors VP16 (20 microM) and doxorubicin (0.3 microM): Highly sensitive T3M4 [corrected] and PT45-P1 cells,and Capan-1 and A818-4 cells that were almost resistant to both anti cancer drugs. VP16,but not doxorubicin,transiently induced NF-kappaB activity in all cell lines,whereas basal NF-kappaB binding was nearly undetectable in T3M4 [corrected] and PT45-P1 cells,but rather high in Capan-1 and A818-4 cells,as demonstrated by gel-shift and luciferase assays. Treatment with various NF-kappaB inhibitors (Gliotoxin,MG132 and Sulfasalazine),or transfection with the IkappaBalpha super-repressor,strongly enhanced the apoptotic effects of VP16 or doxorubicin on resistant Capan-1 and 818-4 cells. Our results indicate that under certain conditions the resistance of pancreatic carcinoma cells to chemotherapy is due to their constitutive NF-kappaB activity rather than the transient induction of NF-kappaB by some anti-cancer drugs. Blockade of basal NF-kappaB activity by well established drugs efficiently reduces chemoresistance of pancreatic cancer cells and offers the potential for improved therapeutic strategies.
View Publication
产品类型:
产品号#:
73262
73264
产品名:
(S) -MG132
(S) -MG132
文献
Begum AN et al. (SEP 2016)
Neurotoxicology 57 45--53
Silver nanoparticles exhibit coating and dose-dependent neurotoxicity in glutamatergic neurons derived from human embryonic stem cells.
Silver nanoparticles (AgNPs) are used extensively as anti-microbial agents in various products,but little is known about their potential neurotoxic effects. In this study,we used glutamatergic neurons derived from human embryonic stem cells as a cellular model to study 20nm citrate-coated AgNPs (AgSCs) and Polyvinylpyrrolidone-coated AgNPs (AgSPs) induced neurotoxicity. AgSCs significantly damaged neurite outgrowths; increased the production of reactive oxygen species and Ca(2+) influxes; reduced the expression of MAP2,PSD95,vGlut1 and NMDA receptor proteins at concentrations as low as 0.1μg/ml. In contrast,AgSPs exhibited neurotoxicity only at higher concentration. Furthermore,our results showed that AgSCs induced glutamate excitotoxicity by the activation of calmodulin and the induction of nitric oxide synthase; increased the phosphorylation of glycogen synthase kinase-3 α/β at Tyr(216) and Tau at Ser(396) and reduced the expression of Tau46,which are typically observed in Alzheimer's disease. This study indicated that stem cells can provide an excellent platform for studying nanoparticle induced neurotoxicity.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Speidel A et al. ( 2016)
PloS one 11 11 e0165949
Leucine-Rich Repeat Kinase 2 Influences Fate Decision of Human Monocytes Differentiated from Induced Pluripotent Stem Cells.
Mutations in Leucine-rich repeat kinase 2 (LRRK2) are strongly associated with familial Parkinson's disease (PD). High expression levels in immune cells suggest a role of LRRK2 in regulating the immune system. In this study,we investigated the effect of the LRRK2 (G2019S) mutation in monocytes,using a human stem cell-derived model expressing LRRK2 at endogenous levels. We discovered alterations in the differentiation pattern of LRRK2 mutant,compared to non-mutant isogenic controls,leading to accelerated monocyte production and a reduction in the non-classical CD14+CD16+ monocyte subpopulation in the LRRK2 mutant cells. LPS-treatment of the iPSC-derived monocytes significantly increased the release of pro-inflammatory cytokines,demonstrating a functional response without revealing any significant differences between the genotypes. Assessment of the migrational capacity of the differentiated monocytes revealed moderate deficits in LRRK2 mutant cells,compared to their respective controls. Our findings indicate a pivotal role of LRRK2 in hematopoietic fate decision,endorsing the involvement of the immune system in the development of PD.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Tyagi RK et al. (FEB 2017)
Scientific reports 7 41083
Human IDO-competent, long-lived immunoregulatory dendritic cells induced by intracellular pathogen, and their fate in humanized mice.
Targeting of myeloid-dendritic cell receptor DC-SIGN by numerous chronic infectious agents,including Porphyromonas gingivalis,is shown to drive-differentiation of monocytes into dysfunctional mDCs. These mDCs exhibit alterations of their fine-tuned homeostatic function and contribute to dysregulated immune-responses. Here,we utilize P. gingivalis mutant strains to show that pathogen-differentiated mDCs from primary human-monocytes display anti-apoptotic profile,exhibited by elevated phosphorylated-Foxo1,phosphorylated-Akt1,and decreased Bim-expression. This results in an overall inhibition of DC-apoptosis. Direct stimulation of complex component CD40 on DCs leads to activation of Akt1,suggesting CD40 involvement in anti-apoptotic effects observed. Further,these DCs drove dampened CD8(+) T-cell and Th1/Th17 effector-responses while inducing CD25(+)Foxp3(+)CD127(-) Tregs. In vitro Treg induction was mediated by DC expression of indoleamine 2,3-dioxygenase,and was confirmed in IDO-KO mouse model. Pathogen-infected &CMFDA-labeled MoDCs long-lasting survival was confirmed in a huMoDC reconstituted humanized mice. In conclusion,our data implicate PDDCs as an important target for resolution of chronic infection.
View Publication
产品类型:
产品号#:
17858
17858RF
15028
15068
15628
15668
产品名:
EasySep™人CD14正选试剂盒II
RoboSep™ 人CD14正选试剂盒II
RosetteSep™人单核细胞富集抗体混合物
RosetteSep™人单核细胞富集抗体混合物
RosetteSep™人单核细胞去除抗体混合物
RosetteSep™人单核细胞去除抗体混合物
文献
Nguyen AT et al. (JUN 2011)
Blood 117 25 6912--22
DOT1L, the H3K79 methyltransferase, is required for MLL-AF9-mediated leukemogenesis.
Chromosomal translocations of the mixed lineage leukemia (MLL) gene are a common cause of acute leukemias. The oncogenic function of MLL fusion proteins is,in part,mediated through aberrant activation of Hoxa genes and Meis1,among others. Here we demonstrate using a tamoxifen-inducible Cre-mediated loss of function mouse model that DOT1L,an H3K79 methyltransferase,is required for both initiation and maintenance of MLL-AF9-induced leukemogenesis in vitro and in vivo. Through gene expression and chromatin immunoprecipitation analysis we demonstrate that mistargeting of DOT1L,subsequent H3K79 methylation,and up-regulation of Hoxa and Meis1 genes underlie the molecular mechanism of how DOT1L contributes to MLL-AF9-mediated leukemogenesis. Our study not only provides the first in vivo evidence for the function of DOT1L in leukemia,but also reveals the molecular mechanism for DOT1L in MLL-AF9 mediated leukemia. Thus,DOT1L may serve as a potential therapeutic target for the treatment of leukemia caused by MLL translocations.
View Publication
产品类型:
产品号#:
03534
产品名:
MethoCult™GF M3534
文献
Jeselsohn R et al. (JAN 2010)
Cancer cell 17 1 65--76
Cyclin D1 kinase activity is required for the self-renewal of mammary stem and progenitor cells that are targets of MMTV-ErbB2 tumorigenesis.
Transplantation studies have demonstrated the existence of mammary progenitor cells with the ability to self-renew and regenerate a functional mammary gland. Although these progenitors are the likely targets for oncogenic transformation,correlating progenitor populations with certain oncogenic stimuli has been difficult. Cyclin D1 is required for lobuloalveolar development during pregnancy and lactation as well as MMTV-ErbB2- but not MMTV-Wnt1-mediated tumorigenesis. Using a kinase-deficient cyclin D1 mouse,we identified two functional mammary progenitor cell populations,one of which is the target of MMTV-ErbB2. Moreover,cyclin D1 activity is required for the self-renewal and differentiation of mammary progenitors because its abrogation leads to a failure to maintain the mammary epithelial regenerative potential and also results in defects in luminal lineage differentiation.
View Publication
产品类型:
产品号#:
产品名:
文献
S. L. Rogers et al. (JUL 2006)
Journal of immunology (Baltimore,Md. : 1950) 177 1 414--21
A role for DNA hypomethylation and histone acetylation in maintaining allele-specific expression of mouse NKG2A in developing and mature NK cells.
The repertoire of receptors that is expressed by NK cells is critical for their ability to kill virally infected or transformed cells. However,the molecular mechanisms that determine whether and when NK receptor genes are transcribed during hemopoiesis remain unclear. In this study,we show that hypomethylation of a CpG-rich region in the mouse NKG2A gene is associated with transcription of NKG2A in ex vivo NK cells and NK cell lines. This observation was extended to various developmental stages of NK cells sorted from bone marrow,in which we demonstrate that the CpGs are methylated in the NKG2A-negative stages (hemopoietic stem cells,NK progenitors,and NKG2A-negative NK cells),and hypomethylated specifically in the NKG2A-positive NK cells. Furthermore,we provide evidence that DNA methylation is important in maintaining the allele-specific expression of NKG2A. Finally,we show that acetylated histones are associated with the CpG-rich region in NKG2A positive,but not negative,cell lines,and that treatment with the histone deacetylase inhibitor trichostatin A alone is sufficient to induce NKG2A expression. Treatment with the methyltransferase inhibitor 5-azacytidine only is insufficient to induce transcription,but cotreatment with both drugs resulted in a significantly greater induction,suggesting a cooperative role for DNA methylation and histone acetylation status in regulating gene expression. These results enhance our understanding of the formation and maintenance of NK receptor repertoires in developing and mature NK cells.
View Publication
产品类型:
产品号#:
产品名:
文献
Lu HF et al. (MAR 2014)
Biomaterials 35 9 2816--2826
A defined xeno-free and feeder-free culture system for the derivation, expansion and direct differentiation of transgene-free patient-specific induced pluripotent stem cells
A defined xeno-free system for patient-specific iPSC derivation and differentiation is required for translation to clinical applications. However,standard somatic cell reprogramming protocols rely on using MEFs and xenogeneic medium,imposing a significant obstacle to clinical translation. Here,we describe a well-defined culture system based on xeno-free media and LN521 substrate which supported i) efficient reprogramming of normal or diseased skin fibroblasts from human of different ages into hiPSCs with a 15-30 fold increase in efficiency over conventional viral vector-based method; ii) long-term self-renewal of hiPSCs; and iii) direct hiPSC lineage-specific differentiation. Using an excisable polycistronic vector and optimized culture conditions,we achieved up to 0.15%-0.3% reprogramming efficiencies. Subsequently,transgene-free hiPSCs were obtained by Cre-mediated excision of the reprogramming factors. The derived iPSCs maintained long-term self-renewal,normal karyotype and pluripotency,as demonstrated by the expression of stem cell markers and ability to form derivatives of three germ layers both in vitro and in vivo. Importantly,we demonstrated that Parkinson's patient transgene-free iPSCs derived using the same system could be directed towards differentiation into dopaminergic neurons under xeno-free culture conditions. Our approach provides a safe and robust platform for the generation of patient-specific iPSCs and derivatives for clinical and translational applications. textcopyright 2013 Elsevier Ltd.
View Publication
产品类型:
产品号#:
07923
07920
85850
85857
77003
产品名:
Dispase (1 U/mL)
ACCUTASE™
mTeSR™1
mTeSR™1
CellAdhere™ 层粘连蛋白-521
文献
K.-L. Chu et al. (NOV 2018)
Mucosal immunology
GITRL on inflammatory antigen presenting cells in the lung parenchyma provides signal 4 for T-cell accumulation and tissue-resident memory T-cell formation.
T-cell responses in the lung are critical for protection against respiratory pathogens. TNFR superfamily members play important roles in providing survival signals to T cells during respiratory infections. However,whether these signals take place mainly during priming in the secondary lymphoid organs and/or in the peripheral tissues remains unknown. Here we show that under conditions of competition,GITR provides a T-cell intrinsic advantage to both CD4 and CD8 effector T cells in the lung tissue,as well as for the formation of CD4 and CD8 tissue-resident memory T cells during respiratory influenza infection in mice. In contrast,under non-competitive conditions,GITR has a preferential effect on CD8 over CD4 T cells. The nucleoprotein-specific CD8 T-cell response partially compensated for GITR deficiency by expansion of higher affinity T cells; whereas,the polymerase-specific response was less flexible and more GITR dependent. Following influenza infection,GITR is expressed on lung T cells and GITRL is preferentially expressed on lung monocyte-derived inflammatory antigen presenting cells. Accordingly,we show that GITR+/+ T cells in the lung parenchyma express more phosphorylated-ribosomal protein S6 than their GITR-/- counterparts. Thus,GITR signaling within the lung tissue critically regulates effector and tissue-resident memory T-cell accumulation.
View Publication
产品类型:
产品号#:
19852
19852RF
19853
19853RF
产品名:
EasySep™小鼠CD4+ T细胞分选试剂盒
RoboSep™ 小鼠CD4+ T细胞分选试剂盒
EasySep™小鼠CD8+ T细胞分选试剂盒
RoboSep™ 小鼠CD8+ T细胞分选试剂盒
文献
Trotta R et al. (APR 2005)
Blood 105 8 3011--8
Differential expression of SHIP1 in CD56bright and CD56dim NK cells provides a molecular basis for distinct functional responses to monokine costimulation.
Monocyte cytokines (ie,monokines) induce natural killer (NK) cells to produce interferon-gamma (IFN-gamma),which is critical for monocyte clearance of infectious pathogens and tumor surveillance. Human CD56bright NK cells produce far more IFN-gamma in response to monokines than do CD56dim NK cells. The kinases and phosphatases involved in regulating IFN-gamma production by monokine-activated NK cells are not clearly identified. SHIP1 is a 5' inositol phosphatase that dephosphorylates the phosphatidylinositol-3 kinase (PI-3K) product PI3,4,5P3. Here,we show that constitutive expression of SHIP1 is distinctly lower in CD56bright NK cells compared with CD56dim NK cells,suggesting it could be an important negative regulator of IFN-gamma production in monokine-activated NK cells. Indeed,overexpression of SHIP1 in CD56bright NK cells followed by monokine activation substantially lowered IFN-gamma production. This effect was not seen when NK cells were infected with a SHIP1 mutant containing an inactive catalytic domain. Finally,NK cells in SHIP1-/- mice produced more IFN-gamma in response to monokines in vivo than did NK cells from wild-type mice. Collectively,these results demonstrate that SHIP1 negatively regulates monokine-induced NK cell IFN-gamma production in vitro and in vivo and provide the first molecular explanation for an important functional distinction observed between CD56bright and CD56dim human NK subsets.
View Publication
产品类型:
产品号#:
15025
15065
产品名:
RosetteSep™人NK细胞富集抗体混合物
RosetteSep™人NK细胞富集抗体混合物
文献
Zhang J et al. ( 2016)
International Journal of Biological Sciences 12 6 639--652
Dimethyloxaloylglycine promotes the angiogenic activity of mesenchymal stem cells derived from iPSCs via activation of the PI3K/Akt pathway for bone regeneration
The vascularization of tissue-engineered bone is a prerequisite step for the successful repair of bone defects. Hypoxia inducible factor-1$$ (HIF-1$$) plays an essential role in angiogenesis-osteogenesis coupling during bone regeneration and can activate the expression of angiogenic factors in mesenchymal stem cells (MSCs). Dimethyloxaloylglycine (DMOG) is an angiogenic small molecule that can inhibit prolyl hydroxylase (PHD) enzymes and thus regulate the stability of HIF-1$$ in cells at normal oxygen tension. Human induced pluripotent stem cell-derived MSCs (hiPSC-MSCs) are promising alternatives for stem cell therapy. In this study,we evaluated the effect of DMOG on promoting hiPSC-MSCs angiogenesis in tissue-engineered bone and simultaneously explored the underlying mechanisms in vitro. The effectiveness of DMOG in improving the expression of HIF-1$$ and its downstream angiogenic genes in hiPSC-MSCs demonstrated that DMOG significantly enhanced the gene and protein expression profiles of angiogenic-related factors in hiPSC-MSCs by sustaining the expression of HIF-1$$. Further analysis showed that DMOG-stimulated hiPSC-MSCs angiogenesis was associated with the phosphorylation of protein kinase B (Akt) and with an increase in VEGF production. The effects could be blocked by the addition of the phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002. In a critical-sized calvarial defect model in rats,DMOG-treated hiPSC-MSCs showed markedly improved angiogenic capacity in the tissue-engineered bone,leading to bone regeneration. Collectively,the results indicate that DMOG,via activation of the PI3K/Akt pathway,promotes the angiogenesis of hiPSC-MSCs in tissue-engineered bone for bone defect repair and that DMOG-treated hiPSC-MSCs can be exploited as a potential therapeutic tool in bone regeneration.
View Publication