Chang Q et al. (SEP 2002)
Infection and Immunity 70 9 4977--86
Structure-function relationships for human antibodies to pneumococcal capsular polysaccharide from transgenic mice with human immunoglobulin Loci.
To investigate the influence of antibody structure and specificity on antibody efficacy against Streptococcus pneumoniae,human monospecific antibodies (MAbs) to serotype 3 pneumococcal capsular polysaccharide (PPS-3) were generated from transgenic mice reconstituted with human immunoglobulin loci (XenoMouse mice) vaccinated with a PPS-3-tetanus toxoid conjugate and their molecular genetic structures,epitope specificities,and protective efficacies in normal and complement-deficient mice were determined. Nucleic acid sequence analysis of three MAbs (A7,1A2,and 7C5) revealed that they use two different V(H)3 genes (A7 and 1A2 both use V3-15) and three different V(kappa) gene segments. The MAbs were found to have similar affinities for PPS-3 but different epitope specificities and CDR3 regions. Both A7 and 7C5 had a lysine at the V(H)-D junction,whereas 1A2 had a threonine. Challenge experiments with serotype 3 S. pneumoniae in BALB/c mice revealed that both 10- and 1- micro g doses of A7 and 7C5 were protective,while only a 10- micro g dose of 1A2 was protective. Both A7 and 7C5 were also protective in mice lacking either an intact alternative (FB(-/-)) or classical (C4(-/-)) complement pathway,but 1A2 was not protective in either strain. Our data suggest that PPS-3 consists of epitopes that can elicit both highly protective and less protective antibodies and that the superior efficacies of certain antibodies may be a function of their structures and/or specificities. Further investigation of relationships between structure,specificity,and efficacy for defined MAbs to PPS may identify antibody features that might be useful surrogates for antibody (and vaccine) efficacy.
View Publication
产品类型:
产品号#:
03800
03801
03802
03803
03804
03805
03806
产品名:
ClonaCell™-HY杂交瘤试剂盒
ClonaCell™-HY Medium
ClonaCell™-HY Medium
ClonaCell™-HY Medium
ClonaCell™-HY Medium
ClonaCell™-HY Medium
ClonaCell™衔接挂钩
文献
Gennet N et al. (SEP 2016)
Scientific reports 6 32488
FolR1: a novel cell surface marker for isolating midbrain dopamine neural progenitors and nascent dopamine neurons.
Cell type-specific surface markers offer a powerful tool for purifying defined cell types for restorative therapies and drug screenings. Midbrain dopaminergic neurons (mesDA) are the nerve cells preferentially lost in the brains of Parkinson's disease patients. Clinical trials of transplantation of fetal neural precursors suggest that cell therapy may offer a cure for this devastating neurological disease. Many lines of preclinical studies demonstrate that neural progenitors committed to dopaminergic fate survive and integrate better than postmitotic DA neurons. We show that the folate-receptor 1 (FolR1),a GPI-anchored cell surface molecule,specifically marks mesDA neural progenitors and immature mesDA neurons. FolR1 expression superimposes with Lmx1a,a bona-fide mesDA lineage marker,during the active phase of mesDA neurogenesis from E9.5 to E14.5 during mouse development,as well as in ESC-derived mesDA lineage. FolR1(+) neural progenitors can be isolated by FACS or magnetic sorting (MAC) which give rise to dopamine neurons expressing TH and Pitx3,whilst FolR1 negative cells generate non-dopaminergic neurons and glia cells. This study identifies FolR1 as a new cell surface marker selectively expressed in mesDA progenitors in vivo and in vitro and that can be used to enrich in vitro differentiated TH neurons.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Son M-Y et al. (APR 2014)
Human molecular genetics 23 7 1802--1816
Comparative receptor tyrosine kinase profiling identifies a novel role for AXL in human stem cell pluripotency.
The extensive molecular characterization of human pluripotent stem cells (hPSCs),human embryonic stem cells (hESCs) and human-induced pluripotent stem cells (hiPSCs) is required before they can be applied in the future for personalized medicine and drug discovery. Despite the efforts that have been made with kinome analyses,we still lack in-depth insights into the molecular signatures of receptor tyrosine kinases (RTKs) that are related to pluripotency. Here,we present the first detailed and distinct repertoire of RTK characteristic for hPSC pluripotency by determining both the expression and phosphorylation profiles of RTKs in hESCs and hiPSCs using reverse transcriptase-polymerase chain reaction with degenerate primers that target conserved tyrosine kinase domains and phospho-RTK array,respectively. Among the RTKs tested,the up-regulation of EPHA1,ERBB2,FGFR4 and VEGFR2 and the down-regulation of AXL,EPHA4,PDGFRB and TYRO3 in terms of both their expression and phosphorylation levels were predominantly related to the maintenance of hPSC pluripotency. Notably,the specific inhibition of AXL was significantly advantageous in maintaining undifferentiated hESCs and hiPSCs and for the overall efficiency and kinetics of hiPSC generation. Additionally,a global phosphoproteomic analysis showed that ∼30% of the proteins (293 of 970 phosphoproteins) showed differential phosphorylation upon AXL inhibition in undifferentiated hPSCs,revealing the potential contribution of AXL-mediated phosphorylation dynamics to pluripotency-related signaling networks. Our findings provide a novel molecular signature of AXL in pluripotency control that will complement existing pluripotency-kinome networks.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Lei Y and Schaffer DV (DEC 2013)
Proceedings of the National Academy of Sciences of the United States of America 110 52 E5039----E5048
A fully defined and scalable 3D culture system for human pluripotent stem cell expansion and differentiation
Human pluripotent stem cells (hPSCs),including human embryonic stem cells and induced pluripotent stem cells,are promising for numerous biomedical applications,such as cell replacement therapies,tissue and whole-organ engineering,and high-throughput pharmacology and toxicology screening. Each of these applications requires large numbers of cells of high quality; however,the scalable expansion and differentiation of hPSCs,especially for clinical utilization,remains a challenge. We report a simple,defined,efficient,scalable,and good manufacturing practice-compatible 3D culture system for hPSC expansion and differentiation. It employs a thermoresponsive hydrogel that combines easy manipulation and completely defined conditions,free of any human- or animal-derived factors,and entailing only recombinant protein factors. Under an optimized protocol,the 3D system enables long-term,serial expansion of multiple hPSCs lines with a high expansion rate (∼20-fold per 5-d passage,for a 1072-fold expansion over 280 d),yield (∼2.0 × 107 cells per mL of hydrogel),and purity (∼95% Oct4+),even with single-cell inoculation,all of which offer considerable advantages relative to current approaches. Moreover,the system enabled 3D directed differentiation of hPSCs into multiple lineages,including dopaminergic neuron progenitors with a yield of ∼8 × 107 dopaminergic progenitors per mL of hydrogel and ∼80-fold expansion by the end of a 15-d derivation. This versatile system may be useful at numerous scales,from basic biological investigation to clinical development.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
North JR et al. (MAY 2016)
Journal of biotechnology 226 24--34
A novel approach for emerging and antibiotic resistant infections: Innate defense regulators as an agnostic therapy.
Innate Defense Regulators (IDRs) are short synthetic peptides that target the host innate immune system via an intracellular adaptor protein which functions at key signaling nodes. In this work,further details of the mechanism of action of IDRs have been discovered. The studies reported here show that the lead clinical IDR,SGX94,has broad-spectrum activity against Gram-negative and Gram-positive bacterial infections caused by intracellular or extracellular bacteria and also complements the actions of standard of care antibiotics. Based on in vivo and primary cell culture studies,this activity is shown to result from the primary action of SGX94 on tissue-resident cells and subsequent secondary signaling to activate myeloid-derived cells,resulting in enhanced bacterial clearance and increased survival. Data from non-clinical and clinical studies also show that SGX94 treatment modulates pro-inflammatory and anti-inflammatory cytokine levels,thereby mitigating the deleterious inflammatory consequences of innate immune activation. Since they act through host pathways to provide both broad-spectrum anti-infective capability as well as control of inflammation,IDRs are unlikely to be impacted by resistance mechanisms and offer potential clinical advantages in the fight against emerging and antibiotic resistant bacterial infections.
View Publication
产品类型:
产品号#:
70025
70025.1
70025.2
70025.3
产品名:
冻存的人外周血单个核细胞
冻存的人外周血单个核细胞
冻存的人外周血单个核细胞
冻存的人外周血单个核细胞
文献
Xu Y et al. (MAY 2010)
Proceedings of the National Academy of Sciences of the United States of America 107 18 8129--34
Revealing a core signaling regulatory mechanism for pluripotent stem cell survival and self-renewal by small molecules.
Using a high-throughput chemical screen,we identified two small molecules that enhance the survival of human embryonic stem cells (hESCs). By characterizing their mechanisms of action,we discovered an essential role of E-cadherin signaling for ESC survival. Specifically,we showed that the primary cause of hESC death following enzymatic dissociation comes from an irreparable disruption of E-cadherin signaling,which then leads to a fatal perturbation of integrin signaling. Furthermore,we found that stability of E-cadherin and the resulting survival of ESCs were controlled by specific growth factor signaling. Finally,we generated mESC-like hESCs by culturing them in mESC conditions. And these converted hESCs rely more on E-cadherin signaling and significantly less on integrin signaling. Our data suggest that differential usage of cell adhesion systems by ESCs to maintain self-renewal may explain their profound differences in terms of morphology,growth factor requirement,and sensitivity to enzymatic cell dissociation.
View Publication
产品类型:
产品号#:
72252
72254
72402
72404
72842
72844
产品名:
Thiazovivin
Thiazovivin
(-)-Blebbistatin
(-)-Blebbistatin
Pyrintegrin
Pyrintegrin
文献
Campbell CJV et al. (SEP 2010)
Blood 116 9 1433--42
The human stem cell hierarchy is defined by a functional dependence on Mcl-1 for self-renewal capacity.
The molecular basis for the unique proliferative and self-renewal properties that hierarchically distinguish human stem cells from progenitors and terminally differentiated cells remains largely unknown. We report a role for the Bcl-2 family member myeloid cell leukemia-1 (Mcl-1) as an indispensable regulator of self-renewal in human stem cells and show that a functional dependence on Mcl-1 defines the human stem cell hierarchy. In vivo pharmacologic targeting of the Bcl-2 family members in human hematopoietic stem cells (HSCs) and human leukemic stem cells reduced stem cell regenerative and self-renewal function. Subsequent protein expression studies showed that,among the Bcl-2 family members,only Mcl-1 was up-regulated exclusively in the human HSC fraction on in vivo regeneration of hematopoiesis. Short hairpin RNA-knockdown of Mcl-1 in human cord blood cells did not affect survival in the HSC or hematopoietic progenitor cell fractions in vitro but specifically reduced the in vivo self-renewal function of human HSCs. Moreover,knockdown of Mcl-1 in ontogenetically primitive human pluripotent stem cells resulted in almost complete ablation of stem cell self-renewal function. Our findings show that Mcl-1 is an essential regulator of stem cell self-renewal in humans and therefore represents an axis for therapeutic interventions.
View Publication
产品类型:
产品号#:
04434
04444
产品名:
MethoCult™H4434经典
MethoCult™H4434经典
文献
Christman JK (AUG 2002)
Oncogene 21 35 5483--95
5-Azacytidine and 5-aza-2'-deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy.
5-Azacytidine was first synthesized almost 40 years ago. It was demonstrated to have a wide range of anti-metabolic activities when tested against cultured cancer cells and to be an effective chemotherapeutic agent for acute myelogenous leukemia. However,because of 5-azacytidine's general toxicity,other nucleoside analogs were favored as therapeutics. The finding that 5-azacytidine was incorporated into DNA and that,when present in DNA,it inhibited DNA methylation,led to widespread use of 5-azacytidine and 5-aza-2'-deoxycytidine (Decitabine) to demonstrate the correlation between loss of methylation in specific gene regions and activation of the associated genes. There is now a revived interest in the use of Decitabine as a therapeutic agent for cancers in which epigenetic silencing of critical regulatory genes has occurred. Here,the current status of our understanding of the mechanism(s) by which 5-azacytosine residues in DNA inhibit DNA methylation is reviewed with an emphasis on the interactions of these residues with bacterial and mammalian DNA (cytosine-C5) methyltransferases. The implications of these mechanistic studies for development of less toxic inhibitors of DNA methylation are discussed.
View Publication
产品类型:
产品号#:
72012
72014
产品名:
5-氮杂胞苷(5-Azacytidine)
5-氮杂胞苷(5-Azacytidine)
文献
El Ouriaghli F et al. (MAR 2003)
Blood 101 5 1752--8
Neutrophil elastase enzymatically antagonizes the in vitro action of G-CSF: implications for the regulation of granulopoiesis.
There is evidence that neutrophil production is a balance between the proliferative action of granulocyte-colony-stimulating factor (G-CSF) and a negative feedback from mature neutrophils (the chalone). Two neutrophil serine proteases have been implicated in granulopoietic regulation: pro-proteinase 3 inhibits granulocyte macrophage-colony-forming unit (CFU-GM) growth,and elastase mutations cause cyclic and congenital neutropenia. We further studied the action of the neutrophil serine proteases (proteinase 3,elastase,azurocidin,and cathepsin G) on granulopoiesis in vitro. Elastase inhibited CFU-GM in methylcellulose culture. In serum-free suspension cultures of CD34+ cells,elastase completely abrogated the proliferation induced by G-CSF but not that of GM-CSF or stem cell factor (SCF). The blocking effect of elastase was prevented by inhibition of its enzymatic activity with phenylmethylsulfonyl fluoride (PMSF) or heat treatment. When exposed to enzymatically active elastase,G-CSF,but not GM-CSF or SCF,was rapidly cleaved and rendered inactive. These results support a role for neutrophil elastase in providing negative feedback to granulopoiesis by direct antagonism of G-CSF.
View Publication
产品类型:
产品号#:
04230
09500
09600
09650
产品名:
MethoCult™H4230
BIT 9500血清替代物
StemSpan™ SFEM
StemSpan™ SFEM
文献
Kline TB et al. (NOV 1982)
Journal of medicinal chemistry 25 11 1381--3
Structure-activity relationships for hallucinogenic N,N-dialkyltryptamines: photoelectron spectra and serotonin receptor affinities of methylthio and methylenedioxy derivatives.
Serotonin receptor affinity and photelectron spectral data were obtained on a number of substituted N,N-dimethyltryptamines. Evidence is presented that electron-donating substituents in the 5-position lead to enhanced behavioral disruption activity and serotonin receptor affinity as compared to unsubstituted N,N-dimethyltryptamine and analogues substituted in the 4- or 6-position. Some correlation was found between ionization potentials and behavioral activity,which may have implications concerning the mechanism of receptor binding.
View Publication
产品类型:
产品号#:
73712
73714
产品名:
I-BET151
I-BET151
文献
E. A. Davis et al. (JUN 2018)
Physiological reports 6 12 e13745
Evidence for a direct effect of the autonomic nervous system on intestinal epithelial stem cell proliferation.
The sympathetic (SNS) and parasympathetic (PNS) branches of the autonomic nervous system have been implicated in the modulation of the renewal of many tissues,including the intestinal epithelium. However,it is not known whether these mechanisms are direct,requiring an interaction between autonomic neurotransmitters and receptors on proliferating epithelial cells. To evaluate the existence of a molecular framework for a direct effect of the SNS or PNS on intestinal epithelial renewal,we measured gene expression for the main autonomic neurotransmitter receptors in this tissue. We separately evaluated intestinal epithelial regions comprised of the stem,progenitor,and mature cells,which allowed us to investigate the distinct contributions of each cell population to this proposed autonomic effect. Notably,we found that the stem cells expressed the receptors for the SNS-associated alpha2A adrenoreceptor and the PNS-associated muscarinic acetylcholine receptors (M1 and M3). In a separate experiment,we found that the application of norepinephrine or acetylcholine decreases the expression of cyclin D1,a gene necessary for cell cycle progression,in intestinal epithelial organoids compared with controls (P {\textless} 0.05). Together,these results provide evidence of a direct mechanism for the autonomic nervous system influence on intestinal epithelial stem cell proliferation.
View Publication
产品类型:
产品号#:
06005
产品名:
IntestiCult™ 类器官生长培养基 (小鼠)
文献
Muthuswamy R et al. (JUL 2008)
Cancer research 68 14 5972--8
Ability of mature dendritic cells to interact with regulatory T cells is imprinted during maturation.
Preferential activation of regulatory T (Treg) cells limits autoimmune tissue damage during chronic immune responses but can also facilitate tumor growth. Here,we show that tissue-produced inflammatory mediators prime maturing dendritic cells (DC) for the differential ability of attracting anti-inflammatory Treg cells. Our data show that prostaglandin E(2) (PGE(2)),a factor overproduced in chronic inflammation and cancer,induces stable Treg-attracting properties in maturing DC,mediated by CCL22. The elevated production of CCL22 by PGE(2)-matured DC persists after the removal of PGE(2) and is further elevated after secondary stimulation of DC in a neutral environment. This PGE(2)-induced overproduction of CCL22 and the resulting attraction of FOXP3(+) Tregs are counteracted by IFN alpha,a mediator of acute inflammation,which also restores the ability of the PGE(2)-exposed DC to secrete the Th1-attracting chemokines: CXCL9,CXCL10,CXCL11,and CCL5. In accordance with these observations,different DCs clinically used as cancer vaccines show different Treg-recruiting abilities,with PGE(2)-matured DC,but not type 1-polarized DC,generated in the presence of type I and type II IFNs,showing high Treg-attracting activity. The current data,showing that the ability of mature DC to interact with Treg cells is predetermined at the stage of DC maturation,pave the way to preferentially target the regulatory versus proinflammatory T cells in autoimmunity and transplantation,as opposed to intracellular infections and cancer.
View Publication