Kriz V et al. (NOV 2006)
The Journal of biological chemistry 281 45 34484--91
The SHB adapter protein is required for normal maturation of mesoderm during in vitro differentiation of embryonic stem cells.
Definitive mesoderm arises from a bipotent mesendodermal population,and to study processes controlling its development at this stage,embryonic stem (ES) cells can be employed. SHB (Src homology 2 protein in beta-cells) is an adapter protein previously found to be involved in ES cell differentiation to mesoderm. To further study the role of SHB in this context,we have established ES cell lines deficient for one (SHB+/-) or both SHB alleles (SHB-/-). Differentiating embryoid bodies (EBs) derived from these ES cell lines were used for gene expression analysis. Alternatively,EBs were stained for the blood vessel marker CD31. For hematopoietic differentiation,EBs were differentiated in methylcellulose. SHB-/- EBs exhibited delayed down-regulation of the early mesodermal marker Brachyury. Later mesodermal markers relatively specific for the hematopoietic,vascular,and cardiac lineages were expressed at lower levels on day 6 or 8 of differentiation in EBs lacking SHB. The expression of vascular endothelial growth factor receptor-2 and fibroblast growth factor receptor-1 was also reduced in SHB-/- EBs. SHB-/- EBs demonstrated impaired blood vessel formation after vascular endothelial growth factor stimulation. In addition,the SHB-/- ES cells formed fewer blood cell colonies than SHB+/+ ES cells. It is concluded that SHB is required for appropriate hematopoietic and vascular differentiation and that delayed down-regulation of Brachyury expression may play a role in this context.
View Publication
产品类型:
产品号#:
03434
03444
产品名:
MethoCult™GF M3434
MethoCult™GF M3434
文献
Wang L et al. (DEC 2016)
Materials science & engineering. C,Materials for biological applications 69 1125--1136
Injectable calcium phosphate with hydrogel fibers encapsulating induced pluripotent, dental pulp and bone marrow stem cells for bone repair.
Human induced pluripotent stem cell-derived mesenchymal stem cells (hiPSC-MSCs),dental pulp stem cells (hDPSCs) and bone marrow MSCs (hBMSCs) are exciting cell sources in regenerative medicine. However,there has been no report comparing hDPSCs,hBMSCs and hiPSC-MSCs for bone engineering in an injectable calcium phosphate cement (CPC) scaffold. The objectives of this study were to: (1) develop a novel injectable CPC containing hydrogel fibers encapsulating stem cells for bone engineering,and (2) compare cell viability,proliferation and osteogenic differentiation of hDPSCs,hiPSC-MSCs from bone marrow (BM-hiPSC-MSCs) and from foreskin (FS-hiPSC-MSCs),and hBMSCs in CPC for the first time. The results showed that the injection did not harm cell viability. The porosity of injectable CPC was 62%. All four types of cells proliferated and differentiated down the osteogenic lineage inside hydrogel fibers in CPC. hDPSCs,BM-hiPSC-MSCs,and hBMSCs exhibited high alkaline phosphatase,runt-related transcription factor,collagen I,and osteocalcin gene expressions. Cell-synthesized minerals increased with time (ptextless0.05),with no significant difference among hDPSCs,BM-hiPSC-MSCs and hBMSCs (ptextgreater0.1). Mineralization by hDPSCs,BM-hiPSC-MSCs,and hBMSCs inside CPC at 14d was 14-fold that at 1d. FS-hiPSC-MSCs were inferior in osteogenic differentiation compared to the other cells. In conclusion,hDPSCs,BM-hiPSC-MSCs and hBMSCs are similarly and highly promising for bone tissue engineering; however,FS-hiPSC-MSCs were relatively inferior in osteogenesis. The novel injectable CPC with cell-encapsulating hydrogel fibers may enhance bone regeneration in dental,craniofacial and orthopedic applications.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Bö et al. (DEC 2005)
Journal of Immunological Methods 307 1-2 13--23
Establishment of a strategy for the rapid generation of a monoclonal antibody against the human protein SNEV (hNMP200) by flow-cytometric cell sorting
The screening for antigen-specific hybridoma cells with adequate production rates is still a time-,labour- and money-consuming procedure. A reduction in cell culture testing by specifically selecting those fused cells that produce antibody could therefore make hybridoma technology more attractive,even for small research groups or for newly discovered proteins at an early stage of research. Additional problems,such as the requirement to produce sufficient amounts of the unknown protein at a purity that allows specific immunisation of mice and testing of the resulting hybridoma clones,also need to be overcome. Here we present a new strategy to isolate rapidly and efficiently monoclonal antibodies against new proteins,for which only sequence information at the DNA level is known. The strategy consists of fusion of the protein to a hexa-His-tag to allow easy purification,production in yeast and insect cells to reduce background immunisation with host cell proteins and the selection of IgG-producing hybridoma cells by flow-cytometric cell sorting using the affinity matrix secretion assay technique. ?? 2005 Elsevier B.V. All rights reserved.
View Publication
产品类型:
产品号#:
03800
03801
03802
03803
03804
03805
03806
产品名:
ClonaCell™-HY杂交瘤试剂盒
ClonaCell™-HY Medium
ClonaCell™-HY Medium
ClonaCell™-HY Medium
ClonaCell™-HY Medium
ClonaCell™-HY Medium
ClonaCell™衔接挂钩
文献
Liu W et al. (JUL 2006)
The Journal of experimental medicine 203 7 1701--11
CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells.
Regulatory T (T reg) cells are critical regulators of immune tolerance. Most T reg cells are defined based on expression of CD4,CD25,and the transcription factor,FoxP3. However,these markers have proven problematic for uniquely defining this specialized T cell subset in humans. We found that the IL-7 receptor (CD127) is down-regulated on a subset of CD4(+) T cells in peripheral blood. We demonstrate that the majority of these cells are FoxP3(+),including those that express low levels or no CD25. A combination of CD4,CD25,and CD127 resulted in a highly purified population of T reg cells accounting for significantly more cells that previously identified based on other cell surface markers. These cells were highly suppressive in functional suppressor assays. In fact,cells separated based solely on CD4 and CD127 expression were anergic and,although representing at least three times the number of cells (including both CD25(+)CD4(+) and CD25(-)CD4(+) T cell subsets),were as suppressive as the classic" CD4(+)CD25(hi) T reg cell subset. Finally�
View Publication
产品类型:
产品号#:
15022
15062
15621
15661
产品名:
RosetteSep™人CD4+ T细胞富集抗体混合物
RosetteSep™人CD4+ T细胞富集抗体混合物
RosetteSep™人CD3去除抗体混合物
RosetteSep™人CD3去除抗体混合物
文献
Dai Z et al. (DEC 2007)
Phytomedicine : international journal of phytotherapy and phytopharmacology 14 12 806--14
Resveratrol enhances proliferation and osteoblastic differentiation in human mesenchymal stem cells via ER-dependent ERK1/2 activation.
In the present study,we investigated the in vitro effect of resveratrol (RSVL),a polyphenolic phytoestrogen,on cell proliferation and osteoblastic maturation in human bone marrow-derived mesenchymal stem cell (HBMSC) cultures. RSVL (10(-8)-10(-5) M) increased cell growth dose-dependently,as measured by [(3)H]-thymidine incorporation,and stimulated osteoblastic maturation as assessed by alkaline phosphatase (ALP) activity,calcium deposition into the extracellular matrix,and the expression of osteoblastic markers such as RUNX2/CBFA1,Osterix and Osteocalcin in HBMSCs cell cultures. Further studies found that RSVL (10(-6)M) resulted in a rapid activation of both extracellular signal-regulated kinase 1/2 (ERK1/2) and p38 mitogen-activated protein kinase (MAPK) signaling in HBMSCs cultures. The effects of RSVL were mimicked by 17beta-estrodial (10(-8) M) and were abolished by estrogen receptor (ER) antagonist ICI182780. An ERK1/2 pathway inhibitor,PD98059,significantly attenuated RSVL-induced ERK1/2 phosphorylation,consistent with the reduction of cell proliferation and osteoblastic differentiation as well as expression of osteoblastic markers. In contrast,SB203580,a p38 MAPK pathway blocker,blocked RSVL-induced p38 phosphorylation,but resulted in an increase of cell proliferation and a more osteoblastic maturation. These data suggest that RSVL stimulates HBMSCs proliferation and osteoblastic differentiation through an ER-dependent mechanism and coupling to ERK1/2 activation.
View Publication
产品类型:
产品号#:
72862
72864
产品名:
白藜芦醇(Resveratrol)
白藜芦醇(Resveratrol)
文献
Loh KM et al. (JAN 2014)
Cell Stem Cell 14 2 237--252
Efficient endoderm induction from human pluripotent stem cells by logically directing signals controlling lineage bifurcations
Human pluripotent stem cell (hPSC) differentiation typically yields heterogeneous populations. Knowledge of signals controlling embryonic lineage bifurcations could efficiently yield desired cell types through exclusion of alternate fates. Therefore,we revisited signals driving induction and anterior-posterior patterning of definitive endoderm to generate a coherent roadmap for endoderm differentiation. With striking temporal dynamics,BMP and Wnt initially specified anterior primitive streak (progenitor to endoderm),yet,24 hr later,suppressed endoderm and induced mesoderm. At lineage bifurcations,cross-repressive signals separated mutually exclusive fates; TGF-?? and BMP/MAPK respectively induced pancreas versus liver from endoderm by suppressing the alternate lineage. We systematically blockaded alternate fates throughout multiple consecutive bifurcations,thereby efficiently differentiating multiple hPSC lines exclusively into endoderm and its derivatives. Comprehensive transcriptional and chromatin mapping of highly pure endodermal populations revealed that endodermal enhancers existed in a surprising diversity of pre-enhancer" states before activation�
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Wattanapanitch M et al. (SEP 2014)
PloS one 9 9 e106952
Dual small-molecule targeting of SMAD signaling stimulates human induced pluripotent stem cells toward neural lineages.
Incurable neurological disorders such as Parkinson's disease (PD),Huntington's disease (HD),and Alzheimer's disease (AD) are very common and can be life-threatening because of their progressive disease symptoms with limited treatment options. To provide an alternative renewable cell source for cell-based transplantation and as study models for neurological diseases,we generated induced pluripotent stem cells (iPSCs) from human dermal fibroblasts (HDFs) and then differentiated them into neural progenitor cells (NPCs) and mature neurons by dual SMAD signaling inhibitors. Reprogramming efficiency was improved by supplementing the histone deacethylase inhibitor,valproic acid (VPA),and inhibitor of p160-Rho associated coiled-coil kinase (ROCK),Y-27632,after retroviral transduction. We obtained a number of iPS colonies that shared similar characteristics with human embryonic stem cells in terms of their morphology,cell surface antigens,pluripotency-associated gene and protein expressions as well as their in vitro and in vivo differentiation potentials. After treatment with Noggin and SB431542,inhibitors of the SMAD signaling pathway,HDF-iPSCs demonstrated rapid and efficient differentiation into neural lineages. Six days after neural induction,neuroepithelial cells (NEPCs) were observed in the adherent monolayer culture,which had the ability to differentiate further into NPCs and neurons,as characterized by their morphology and the expression of neuron-specific transcripts and proteins. We propose that our study may be applied to generate neurological disease patient-specific iPSCs allowing better understanding of disease pathogenesis and drug sensitivity assays.
View Publication
产品类型:
产品号#:
07923
85850
85857
产品名:
Dispase (1 U/mL)
mTeSR™1
mTeSR™1
文献
Lindgren AG et al. (JAN 2015)
Cell regeneration (London,England) 4 1 1
ETV2 expression increases the efficiency of primitive endothelial cell derivation from human embryonic stem cells.
BACKGROUND: Endothelial cells line the luminal surface of blood vessels and form a barrier between the blood and other tissues of the body. Ets variant 2 (ETV2) is transiently expressed in both zebrafish and mice and is necessary and sufficient for vascular endothelial cell specification. Overexpression of this gene in early zebrafish and mouse embryos results in ectopic appearance of endothelial cells. Ectopic expression of ETV2 in later development results in only a subset of cells responding to the signal.backslashnbackslashnFINDINGS: We have examined the expression pattern of ETV2 in differentiating human embryonic stem cells (ESCs) to determine when the peak of ETV2 expression occurs. We show that overexpression of ETV2 in differentiating human ESC is able to increase the number of endothelial cells generated when administered during or after the endogenous peak of gene expression.backslashnbackslashnCONCLUSIONS: Addition of exogenous ETV2 to human ESCs significantly increased the number of cells expressing angioblast genes without arterial or venous specification. This may be a viable solution to generate in vitro endothelial cells for use in research and in the clinic.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Hu W et al. (AUG 2015)
Cell stem cell 17 2 204--12
Direct Conversion of Normal and Alzheimer's Disease Human Fibroblasts into Neuronal Cells by Small Molecules.
Neuronal conversion from human fibroblasts can be induced by lineage-specific transcription factors; however,the introduction of ectopic genes limits the therapeutic applications of such induced neurons (iNs). Here,we report that human fibroblasts can be directly converted into neuronal cells by a chemical cocktail of seven small molecules,bypassing a neural progenitor stage. These human chemical-induced neuronal cells (hciNs) resembled hiPSC-derived neurons and human iNs (hiNs) with respect to morphology,gene expression profiles,and electrophysiological properties. This approach was further applied to generate hciNs from familial Alzheimer's disease patients. Taken together,our transgene-free and chemical-only approach for direct reprogramming of human fibroblasts into neurons provides an alternative strategy for modeling neurological diseases and for regenerative medicine.
View Publication
产品类型:
产品号#:
72052
72054
72112
72114
72292
72302
72304
72307
72308
72392
72394
72462
72642
73792
73794
产品名:
CHIR99021
CHIR99021
Forskolin
Forskolin
丙戊酸(钠盐)
Y-27632(二盐酸盐)
Y-27632(二盐酸盐)
Y-27632(二盐酸盐)
Y-27632(二盐酸盐)
RepSox(盐酸盐)
RepSox(盐酸盐)
Gö6983
SP600125
RepSox
RepSox
文献
Vauchez K et al. (NOV 2009)
Molecular therapy : the journal of the American Society of Gene Therapy 17 11 1948--58
Aldehyde dehydrogenase activity identifies a population of human skeletal muscle cells with high myogenic capacities.
Aldehyde dehydrogenase 1A1 (ALDH) activity is one hallmark of human bone marrow (BM),umbilical cord blood (UCB),and peripheral blood (PB) primitive progenitors presenting high reconstitution capacities in vivo. In this study,we have identified ALDH(+) cells within human skeletal muscles,and have analyzed their phenotypical and functional characteristics. Immunohistofluorescence analysis of human muscle tissue sections revealed rare endomysial cells. Flow cytometry analysis using the fluorescent substrate of ALDH,Aldefluor,identified brightly stained (ALDH(br)) cells with low side scatter (SSC(lo)),in enzymatically dissociated muscle biopsies,thereafter abbreviated as SMALD(+) (for skeletal muscle ALDH(+)) cells. Phenotypical analysis discriminated two sub-populations according to CD34 expression: SMALD(+)/CD34(-) and SMALD(+)/CD34(+) cells. These sub-populations did not initially express endothelial (CD31),hematopoietic (CD45),and myogenic (CD56) markers. Upon sorting,however,whereas SMALD(+)/CD34(+) cells developed in vitro as a heterogeneous population of CD56(-) cells able to differentiate in adipoblasts,the SMALD(+)/CD34(-) fraction developed in vitro as a highly enriched population of CD56(+) myoblasts able to form myotubes. Moreover,only the SMALD(+)/CD34(-) population maintained a strong myogenic potential in vivo upon intramuscular transplantation. Our results suggest that ALDH activity is a novel marker for a population of new human skeletal muscle progenitors presenting a potential for cell biology and cell therapy.
View Publication
产品类型:
产品号#:
01700
01705
01702
产品名:
ALDEFLUOR™工具
ALDEFLUOR™DEAB试剂
ALDEFLUOR™测定缓冲液
文献
Sharma A et al. (JUN 2013)
Journal of Biological Chemistry 288 25 18439--18447
The role of SIRT6 protein in aging and reprogramming of human induced pluripotent stem cells
Aging is known to be the single most important risk factor for multiple diseases. Sirtuin 6,or SIRT6,has recently been identified as a critical regulator of transcription,genome stability,telomere integrity,DNA repair,and metabolic homeostasis. A knockout mouse model of SIRT6 has displayed dramatic phenotypes of accelerated aging. In keeping with its role in aging,we demonstrated that human dermal fibroblasts (HDFs) from older human subjects were more resistant to reprogramming by classic Yamanaka factors than those from younger human subjects,but the addition of SIRT6 during reprogramming improved such efficiency in older HDFs substantially. Despite the importance of SIRT6,little is known about the molecular mechanism of its regulation. We show,for the first,time posttranscriptional regulation of SIRT6 by miR-766 and inverse correlation in the expression of this microRNA in HDFs from different age groups. Our results suggest that SIRT6 regulates miR-766 transcription via a feedback regulatory loop,which has implications for the modulation of SIRT6 expression in reprogramming of aging cells.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Bao X et al. ( 2016)
Methods in molecular biology (Clifton,N.J.) 1481 183--196
Directed Endothelial Progenitor Differentiation from Human Pluripotent Stem Cells Via Wnt Activation Under Defined Conditions.
Efficient derivation of endothelial cells and their progenitors from human pluripotent stem cells (hPSCs) can facilitate studies of human vascular development,disease modeling,drug discovery,and cell-based therapy. Here we provide a detailed protocol for directing hPSCs to functional endothelial cells and their progenitors in a completely defined,growth factor- and serum-free system by temporal modulation of Wnt/$$-catenin signaling via small molecules. We demonstrate a 10-day,two-stage process that recapitulates endothelial cell development,in which hPSCs first differentiate to endothelial progenitors that then generate functional endothelial cells and smooth muscle cells. Methods to characterize endothelial cell identity and function are also described.
View Publication