Belkind-Gerson J et al. (JAN 2013)
Neurogastroenterology and motility : the official journal of the European Gastrointestinal Motility Society 25 1 61--9.e7
Nestin-expressing cells in the gut give rise to enteric neurons and glial cells.
BACKGROUND Neuronal stem cells (NSCs) are promising for neurointestinal disease therapy. Although NSCs have been isolated from intestinal musclularis,their presence in mucosa has not been well described. Mucosa-derived NSCs are accessible endoscopically and could be used autologously. Brain-derived Nestin-positive NSCs are important in endogenous repair and plasticity. The aim was to isolate and characterize mucosa-derived NSCs,determine their relationship to Nestin-expressing cells and to demonstrate their capacity to produce neuroglial networks in vitro and in vivo. METHODS Neurospheres were generated from periventricular brain,colonic muscularis (Musc),and mucosa-submucosa (MSM) of mice expressing green fluorescent protein (GFP) controlled by the Nestin promoter (Nestin-GFP). Neuronal stem cells were also grown as adherent colonies from intestinal mucosal organoids. Their differentiation potential was assessed using immunohistochemistry using glial and neuronal markers. Brain and gut-derived neurospheres were transplanted into explants of chick embryonic aneural hindgut to determine their fate. KEY RESULTS Musc- and MSM-derived neurospheres expressed Nestin and gave rise to cells of neuronal,glial,and mesenchymal lineage. Although Nestin expression in tissue was mostly limited to glia co-labelled with glial fibrillary acid protein (GFAP),neurosphere-derived neurons and glia both expressed Nestin in vitro,suggesting that Nestin+/GFAP+ glial cells may give rise to new neurons. Moreover,following transplantation into aneural colon,brain- and gut-derived NSCs were able to differentiate into neurons. CONCLUSIONS & INFERENCES Nestin-expressing intestinal NSCs cells give rise to neurospheres,differentiate into neuronal,glial,and mesenchymal lineages in vitro,generate neurons in vivo and can be isolated from mucosa. Further studies are needed for exploring their potential for treating neuropathies.
View Publication
产品类型:
产品号#:
05700
05701
05702
05703
05704
05715
产品名:
NeuroCult™ 基础培养基(小鼠和大鼠)
NeuroCult™ 扩增添加物(小鼠和大鼠)
NeuroCult™扩增试剂盒(小鼠和大鼠)
NeuroCult™ 分化添加物(小鼠和大鼠)
NeuroCult™ 分化试剂盒(小鼠和大鼠)
NeuroCult™成年中枢神经系统(CNS)组织酶解试剂盒(小鼠和大鼠)
文献
Ma R et al. (FEB 2017)
Thyroid : official journal of the American Thyroid Association 27 2 292--299
TAZ Induction Directs Differentiation of Thyroid Follicular Cells from Human Embryonic Stem Cells.
OBJECTIVE The differentiation program for human thyroid follicular cells (TFCs) relies on the interplay between sequence-specific transcription factors and transcriptional co-regulators. Transcriptional co-activator with PDZ-binding motif (TAZ) is a co-activator that regulates several transcription factors,including PAX8 and NKX2-1,which play a central role in thyroid-specific gene transcription. TAZ and PAX8/NKX2-1 are co-expressed in the nuclei of thyroid cells,and TAZ interacts directly with both PAX8 and NKX2-1,leading to their enhanced transcriptional activity on the thyroglobulin (TG) promoter and additional genes. METHODS The use of a small molecule,ethacridine,recently identified as a TAZ activator,in the differentiation of thyroid cells from human embryonic stem (hES) cells was studied. First,endodermal cells were derived from hES cells using Activin A,followed by induction of differentiation into thyroid cells directed by ethacridine and thyrotropin (TSH). RESULTS The expression of TAZ was increased in the Activin A-derived endodermal cells by ethacridine in a dose-dependent manner and followed by increases in PAX8 and NKX2-1 when assessed by both quantitative polymerase chain reaction and immunostaining. Following further differentiation with the combination of ethacridine and TSH,the thyroid-specific genes TG,TPO,TSHR,and NIS were all induced in the differentiated hES cells. When these cells were cultured with extracellular matrix-coated dishes,thyroid follicle formation and abundant TG protein expression were observed. Furthermore,such hES cell-derived thyroid follicles showed a marked TSH-induced and dose-dependent increase in radioiodine uptake and protein-bound iodine accumulation. CONCLUSION These data show that fully functional human thyroid cells can be derived from hES cells using ethacridine,a TAZ activator,which induces thyroid-specific gene expression and promotes thyroid cell differentiation from the hES cells. These studies again demonstrate the importance of transcriptional regulation in thyroid cell development. This approach also yields functional human thyrocytes,without any gene transfection or complex culture conditions,by directly manipulating the transcriptional machinery without interfering with intermediate signaling events.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Vittet D et al. (NOV 1996)
Blood 88 9 3424--31
Embryonic stem cells differentiate in vitro to endothelial cells through successive maturation steps.
The mechanisms involved in the regulation of vasculogenesis still remain unclear in mammals. Totipotent embryonic stem (ES) cells may represent a suitable in vitro model to study molecular events involved in vascular development. In this study,we followed the expression kinetics of a relatively large set of endothelial-specific markers in ES-derived embryoid bodies (EBs). Results of both reverse transcription-polymerase chain reaction and/or immunofluorescence analysis show that a spontaneous endothelial differentiation occurs during EBs development. ES-derived endothelial cells express a full range of cell lineage-specific markers: platelet endothelial cell adhesion molecule (PECAM),Flk-1,tie-1,tie-2,vascular endothelial (VE) cadherin,MECA-32,and MEC-14.7. Analysis of the kinetics of endothelial marker expression allows the distinction of successive maturation steps. Flk-1 was the first to be detected; its mRNA is apparent from day 3 of differentiation. PECAM and tie-2 mRNAs were found to be expressed only from day 4,whereas VE-cadherin and tie-1 mRNAs cannot be detected before day 5. Immunofluorescence stainings of EBs with antibodies directed against Flk-1,PECAM,VE-cadherin,MECA-32,and MEC-14.7 confirmed that the expression of these antigens occurs at different steps of endothelial cell differentiation. The addition of an angiogenic growth factor mixture including erythropoietin,interleukin-6,fibroblast growth factor 2,and vascular endothelial growth factor in the EB culture medium significantly increased the development of primitive vascular-like structures within EBs. These results indicate that this in vitro system contains a large part of the endothelial cell differentiation program and constitutes a suitable model to study the molecular mechanisms involved in vasculogenesis.
View Publication
产品类型:
产品号#:
产品名:
文献
C. Xu et al. ( 2004)
Stem cells (Dayton,Ohio) 22 6 972--80
Immortalized fibroblast-like cells derived from human embryonic stem cells support undifferentiated cell growth.
Human embryonic stem cells (hESCs) have the potential to generate multiple cell types and hold promise for future therapeutic applications. Although undifferentiated hESCs can proliferate indefinitely,hESC derivatives significantly downregulate telomerase and have limited replication potential. In this study we examine whether the replicative lifespan of hESC derivatives can be extended by ectopic expression of human telomerase reverse transcriptase (hTERT),the catalytic component of the telomerase complex. To this end,we have derived HEF1 cells,a fibroblast-like cell type,differentiated from hESCs. Infection of HEF1 cells with a retrovirus expressing hTERT extends their replicative capacity,resulting in immortal human HEF1-hTERT cells. HEF1-hTERT cells can be used to produce conditioned medium (CM) capable of supporting hESC growth under feeder-free conditions. Cultures maintained in HEF1-CM show characteristics similar to mouse embryonic fibroblast CM control cultures,including morphology,surface marker and transcription factor expression,telomerase activity,differentiation,and karyotypic stability. In addition,HEF1-hTERT cells have the capacity to differentiate into cells of the osteogenic lineage. These results suggest that immortalized cell lines can be generated from hESCs and that cells derived from hESCs can be used to support their own growth,creating a genotypically homogeneous system for the culture of hESCs.
View Publication
产品类型:
产品号#:
产品名:
文献
Pua HH et al. (JAN 2007)
The Journal of experimental medicine 204 1 25--31
A critical role for the autophagy gene Atg5 in T cell survival and proliferation.
Macroautophagy (hereafter referred to as autophagy) is a well-conserved intracellular degradation process. Recent studies examining cells lacking the autophagy genes Atg5 and Atg7 have demonstrated that autophagy plays essential roles in cell survival during starvation,in innate cell clearance of microbial pathogens,and in neural cell maintenance. However,the role of autophagy in T lymphocyte development and survival is not known. Here,we demonstrate that autophagosomes form in primary mouse T lymphocytes. By generating Atg5-/- chimeric mice,we found that Atg5-deficient T lymphocytes underwent full maturation. However,the numbers of total thymocytes and peripheral T and B lymphocytes were reduced in Atg5 chimeras. In the periphery,Atg5-/- CD8+ T lymphocytes displayed dramatically increased cell death. Furthermore,Atg5-/- CD4+ and CD8+ T cells failed to undergo efficient proliferation after TCR stimulation. These results demonstrate a critical role for Atg5 in multiple aspects of lymphocyte development and function and suggest that autophagy may be essential for both T lymphocyte survival and proliferation.
View Publication
产品类型:
产品号#:
产品名:
文献
Tang Y et al. (SEP 2007)
Journal of immunology (Baltimore,Md. : 1950) 179 5 2815--23
Regulation of antibody-dependent cellular cytotoxicity by IgG intrinsic and apparent affinity for target antigen.
Unconjugated mAbs have emerged as useful cancer therapeutics. Ab-dependent cellular cytotoxicity (ADCC) is believed to be a major antitumor mechanism of some anticancer Abs. However,the factors that regulate the magnitude of ADCC are incompletely understood. In this study,we described the relationship between Ab affinity and ADCC. A series of human IgG1 isotype Abs was created from the anti-HER2/neu (also named c-erbB2) C6.5 single-chain Fv (scFv) and its affinity mutants. The scFv affinities range from 10(-7) to 10(-11) M,and the IgG Abs retain the affinities of the scFv from which they were derived. The apparent affinity of the Abs ranged from nearly 10(-10) M (the lowest affinity variant) to almost 10(-11) M (the other variants). The IgG molecules were tested for their ability to elicit ADCC in vitro against three tumor cell lines with differing levels of HER2/neu expression using unactivated human PBMC from healthy donors as the effector cells. The results demonstrated that both the apparent affinity and intrinsic affinity of the Abs studied regulate ADCC. High-affinity tumor Ag binding by the IgGs led to the most efficient and powerful ADCC. Tumor cells expressing high levels of HER2/neu are more susceptible to the ADCC triggered by Abs than the cells expressing lower amounts of HER2/neu. These findings justify the examination of high affinity Abs for ADCC promotion. Because high affinity may impair in vivo tumor targeting,a careful examination of Ab structure to function relationships is required to develop optimized therapeutic unconjugated Abs.
View Publication
产品类型:
产品号#:
15025
15065
产品名:
RosetteSep™人NK细胞富集抗体混合物
RosetteSep™人NK细胞富集抗体混合物
文献
Sii-Felice K et al. (MAR 2008)
The EMBO journal 27 5 770--81
Fanconi DNA repair pathway is required for survival and long-term maintenance of neural progenitors.
Although brain development abnormalities and brain cancer predisposition have been reported in some Fanconi patients,the possible role of Fanconi DNA repair pathway during neurogenesis is unclear. We thus addressed the role of fanca and fancg,which are involved in the activation of Fanconi pathway,in neural stem and progenitor cells during brain development and adult neurogenesis. Fanca(-/-) and fancg(-/-) mice presented with microcephalies and a decreased neuronal production in developing cortex and adult brain. Apoptosis of embryonic neural progenitors,but not that of postmitotic neurons,was increased in the neocortex of fanca(-/-) and fancg(-/-) mice and was correlated with chromosomal instability. In adult Fanconi mice,we showed a reduced proliferation of neural progenitor cells related to apoptosis and accentuated neural stem cells exhaustion with ageing. In addition,embryonic and adult Fanconi neural stem cells showed a reduced capacity to self-renew in vitro. Our study demonstrates a critical role for Fanconi pathway in neural stem and progenitor cells during developmental and adult neurogenesis.
View Publication
产品类型:
产品号#:
05700
05701
05702
产品名:
NeuroCult™ 基础培养基(小鼠和大鼠)
NeuroCult™ 扩增添加物(小鼠和大鼠)
NeuroCult™扩增试剂盒(小鼠和大鼠)
文献
Shen H et al. (AUG 2008)
Journal of immunology (Baltimore,Md. : 1950) 181 3 1849--58
Dual signaling of MyD88 and TRIF is critical for maximal TLR4-induced dendritic cell maturation.
TLR4 is a unique TLR because downstream signaling occurs via two separate pathways,as follows: MyD88 and Toll IL-1 receptor (TIR) domain-containing adaptor-inducing IFN-beta (TRIF). In this study,we compared and contrasted the interplay of these pathways between murine dendritic cells (DCs) and macrophages during LPS stimulation. During TLR4 activation,neither pathway on its own was critical for up-regulation of costimulatory molecules in DCs,whereas the up-regulation of costimulatory molecules was largely TRIF dependent in macrophages. LPS-induced secreted factors,of which type I IFNs were one of the active components,played a larger role in promoting the up-regulation of costimulatory molecules in macrophages than DCs. In both cell types,MyD88 and TRIF pathways together accounted for the inflammatory response to LPS activation. Furthermore,signaling of both adaptors allowed maximal T cell priming by LPS-matured DCs,with MyD88 playing a larger role than TRIF. In sum,in our experimental systems,TRIF signaling plays a more important role in LPS-induced macrophage activation than in DC activation.
View Publication
产品类型:
产品号#:
产品名:
文献
Wyvekens N et al. (JUL 2015)
Human gene therapy 26 7 425--431
Dimeric CRISPR RNA-Guided FokI-dCas9 Nucleases Directed by Truncated gRNAs for Highly Specific Genome Editing.
Monomeric clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR associated 9 (Cas9) nucleases have been widely adopted for simple and robust targeted genome editing but also have the potential to induce high-frequency off-target mutations. In principle,two orthogonal strategies for reducing off-target cleavage,truncated guide RNAs (tru-gRNAs) and dimerization-dependent RNA-guided FokI-dCas9 nucleases (RFNs),could be combined as tru-RFNs to further improve genome editing specificity. Here we identify a robust tru-RFN architecture that shows high activity in human cancer cell lines and embryonic stem cells. Additionally,we demonstrate that tru-gRNAs reduce the undesirable mutagenic effects of monomeric FokI-dCas9. Tru-RFNs combine the advantages of two orthogonal strategies for improving the specificity of CRISPR-Cas nucleases and therefore provide a highly specific platform for performing genome editing.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Speen AM et al. ( 2016)
Journal of Biological Chemistry 291 48 25192--25206
Ozone-derived oxysterols affect liver X receptor (LXR) signaling: A potential role for lipid-protein adducts
When inhaled,ozone (O3) interacts with cholesterols of airway epithelial cell membranes or the lung lining fluid,generating chemically reactive oxysterols. The mechanism by which O3-derived oxysterols affect molecular function is unknown. Our data show that in vitro exposure of human bronchial epithelial cells to O3 results in the formation of oxysterols,epoxycholesterol-α and β (α-EpCh,β-EpCh) and Secosterol A and B (Seco A,SecoB),in cell lysates and apical washes. Similarly,bronchoalveolar lavage fluid obtained from human volunteers exposed to O3 contained elevated levels of these oxysterol species. As expected,O3-derived oxysterols have a pro-inflammatory effect and increase NF-κB activity. Interestingly,expression of the cholesterol efflux pump ATP-binding cassette transporter 1 (ABCA1),which is regulated by activation of the liver X receptor (LXR),was suppressed in epithelial cells exposed to O3. Additionally,exposure of LXR knockout mice to O3 enhanced pro-inflammatory cytokine production in the lung,suggesting LXR inhibits O3-induced inflammation. Using alkynyl surrogates of O3-derived oxysterols,our data demonstrate adduction of LXR with Seco A. Similarly,supplementation of epithelial cells with alkynyl-tagged cholesterol followed by O3 exposure causes observable lipid-LXR adduct formation. Experiments using Seco A and the LXR agonist T0901317 (T09) showed reduced expression of ABCA1 as compared to stimulation with T09 alone,indicating that Seco A-LXR protein adduct formation inhibits LXR activation by traditional agonists. Overall,these data demonstrate that O3-derived oxysterols have pro-inflammatory functions and form lipid-protein adducts with LXR,thus leading to suppressed cholesterol regulatory gene expression and providing a biochemical mechanism mediating O3-derived formation of oxidized lipids in the airways and subsequent adverse health effects.
View Publication
产品类型:
产品号#:
05001
05021
05022
产品名:
PneumaCult™-ALI 培养基
PneumaCult™-ALI 培养基含12 mm Transwell®插件
PneumaCult™-ALI 培养基含6.5 mm Transwell®插件
文献
S. Arandjelovic et al. (feb 2019)
Nature immunology 20 2 141--151
A noncanonical role for the engulfment gene ELMO1 in neutrophils that promotes inflammatory arthritis.
Rheumatoid arthritis is characterized by progressive joint inflammation and affects {\~{}}1{\%} of the human population. We noted single-nucleotide polymorphisms (SNPs) in the apoptotic cell-engulfment genes ELMO1,DOCK2,and RAC1 linked to rheumatoid arthritis. As ELMO1 promotes cytoskeletal reorganization during engulfment,we hypothesized that ELMO1 loss would worsen inflammatory arthritis. Surprisingly,Elmo1-deficient mice showed reduced joint inflammation in acute and chronic arthritis models. Genetic and cell-biology studies revealed that ELMO1 associates with receptors linked to neutrophil function in arthritis and regulates activation and early neutrophil recruitment to the joints,without general inhibition of inflammatory responses. Further,neutrophils from the peripheral blood of human donors that carry the SNP in ELMO1 associated with arthritis display increased migratory capacity,whereas ELMO1 knockdown reduces human neutrophil migration to chemokines linked to arthritis. These data identify 'noncanonical' roles for ELMO1 as an important cytoplasmic regulator of specific neutrophil receptors and promoter of arthritis.
View Publication
产品类型:
产品号#:
19762
19762RF
产品名:
EasySep™小鼠中性粒细胞富集试剂盒
RoboSep™ 小鼠中性粒细胞富集试剂盒含滤芯吸头
文献
Wong AP et al. (MAR 2015)
Nature protocols 10 3 363--81
Efficient generation of functional CFTR-expressing airway epithelial cells from human pluripotent stem cells.
Airway epithelial cells are of great interest for research on lung development,regeneration and disease modeling. This protocol describes how to generate cystic fibrosis (CF) transmembrane conductance regulator protein (CFTR)-expressing airway epithelial cells from human pluripotent stem cells (PSCs). The stepwise approach from PSC culture to differentiation into progenitors and then mature epithelia with apical CFTR activity is outlined. Human PSCs that were inefficient at endoderm differentiation using our previous lung differentiation protocol were able to generate substantial lung progenitor cell populations. Augmented CFTR activity can be observed in all cultures as early as at 35 d of differentiation,and full maturation of the cells in air-liquid interface cultures occurs in textless5 weeks. This protocol can be used for drug discovery,tissue regeneration or disease modeling.
View Publication