Imprime PGG (Imprime),an intravenously-administered,soluble $\beta$-glucan,has shown compelling efficacy in multiple phase 2 clinical trials with tumor targeting or anti-angiogenic antibodies. Mechanistically,Imprime acts as pathogen-associated molecular pattern (PAMP) directly activating innate immune effector cells,triggering a coordinated anti-cancer immune response. Herein,using whole blood from healthy human subjects,we show that Imprime-induced anti-cancer functionality is dependent on immune complex formation with naturally-occurring,anti-$\beta$ glucan antibodies (ABA). The formation of Imprime-ABA complexes activates complement,primarily via the classical complement pathway,and is opsonized by iC3b. Immune complex binding depends upon Complement Receptor 3 and Fcg Receptor IIa,eliciting phenotypic activation of,and enhanced chemokine production by,neutrophils and monocytes,enabling these effector cells to kill antibody-opsonized tumor cells via the generation of reactive oxygen species and antibody-dependent cellular phagocytosis. Importantly,these innate immune cell changes were not evident in subjects with low ABA levels but could be rescued with exogenous ABA supplementation. Together,these data indicate that pre-existing ABA are essential for Imprime-mediated anti-cancer immune activation and suggest that pre-treatment ABA levels may provide a plausible patient selection biomarker to delineate patients most likely to benefit from Imprime-based therapy.
View Publication
产品类型:
产品号#:
19666
产品名:
EasySep™ Direct人中性粒细胞分选试剂盒
文献
Cebo C et al. (JAN 2006)
Journal of immunology (Baltimore,Md. : 1950) 176 2 864--72
The decreased susceptibility of Bcr/Abl targets to NK cell-mediated lysis in response to imatinib mesylate involves modulation of NKG2D ligands, GM1 expression, and synapse formation.
Chronic myeloid leukemia is a clonal multilineage myeloproliferative disease of stem cell origin characterized by the presence of the Bcr/Abl oncoprotein,a constitutively active tyrosine kinase. In previous studies,we have provided evidence that Bcr/Abl overexpression in leukemic cells increased their susceptibility to NK-mediated lysis by different mechanisms. In the present study,using UT-7/9 cells,a high level Bcr/Abl transfectant of UT-7 cells,we show that the treatment of Bcr/Abl target by imatinib mesylate (IM),a specific Abl tyrosine kinase inhibitor,hampers the formation of the NK/target immunological synapse. The main effect of IM involves an induction of surface GM1 ganglioside on Bcr/Abl transfectants that prevents the redistribution of MHC-related Ag molecules in lipid rafts upon interaction with NK cells. IM also affects cell surface glycosylation of targets,as assessed by binding of specific lectins resulting in the subsequent modulation of their binding to lectin type NK receptor,particularly NKG2D. In addition,we demonstrate that the tyrosine kinase activity repression results in a decrease of MHC-related Ags-A/B and UL-16-binding protein expression on Bcr/Abl transfectants UT-7/9. We show that NKG2D controls the NK-mediated lysis of UT-7/9 cells,and IM treatment inhibits this activating pathway. Taken together,our results show that the high expression of Bcr/Abl in leukemic cells controls the expression of NKG2D receptor ligands and membrane GM1 via a tyrosine kinase-dependent mechanism and that the modulation of these molecules by IM interferes with NK cell recognition and cytolysis of the transfectants.
View Publication
产品类型:
产品号#:
15025
15065
产品名:
RosetteSep™人NK细胞富集抗体混合物
RosetteSep™人NK细胞富集抗体混合物
文献
Shaw RJ et al. (DEC 2005)
Science (New York,N.Y.) 310 5754 1642--6
The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin.
The Peutz-Jegher syndrome tumor-suppressor gene encodes a protein-threonine kinase,LKB1,which phosphorylates and activates AMPK [adenosine monophosphate (AMP)-activated protein kinase]. The deletion of LKB1 in the liver of adult mice resulted in a nearly complete loss of AMPK activity. Loss of LKB1 function resulted in hyperglycemia with increased gluconeogenic and lipogenic gene expression. In LKB1-deficient livers,TORC2,a transcriptional coactivator of CREB (cAMP response element-binding protein),was dephosphorylated and entered the nucleus,driving the expression of peroxisome proliferator-activated receptor-gamma coactivator 1alpha (PGC-1alpha),which in turn drives gluconeogenesis. Adenoviral small hairpin RNA (shRNA) for TORC2 reduced PGC-1alpha expression and normalized blood glucose levels in mice with deleted liver LKB1,indicating that TORC2 is a critical target of LKB1/AMPK signals in the regulation of gluconeogenesis. Finally,we show that metformin,one of the most widely prescribed type 2 diabetes therapeutics,requires LKB1 in the liver to lower blood glucose levels.
View Publication
产品类型:
产品号#:
73252
73254
产品名:
二甲双胍 (Hydrochloride)
二甲双胍 (Hydrochloride)
文献
Lowe A et al. (MAY 2016)
Stem Cell Reports 6 5 743--756
Intercellular Adhesion-Dependent Cell Survival and ROCK-Regulated Actomyosin-Driven Forces Mediate Self-Formation of a Retinal Organoid
In this study we dissected retinal organoid morphogenesis in human embryonic stem cell (hESC)-derived cultures and established a convenient method for isolating large quantities of retinal organoids for modeling human retinal development and disease. Epithelialized cysts were generated via floating culture of clumps of Matrigel/hESCs. Upon spontaneous attachment and spreading of the cysts,patterned retinal monolayers with tight junctions formed. Dispase-mediated detachment of the monolayers and subsequent floating culture led to self-formation of retinal organoids comprising patterned neuroretina,ciliary margin,and retinal pigment epithelium. Intercellular adhesion-dependent cell survival and ROCK-regulated actomyosin-driven forces are required for the self-organization. Our data supports a hypothesis that newly specified neuroretina progenitors form characteristic structures in equilibrium through minimization of cell surface tension. In long-term culture,the retinal organoids autonomously generated stratified retinal tissues,including photoreceptors with ultrastructure of outer segments. Our system requires minimal manual manipulation,has been validated in two lines of human pluripotent stem cells,and provides insight into optic cup invagination in vivo.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Mace EM et al. ( 2016)
Nature communications 7 12171
Human NK cell development requires CD56-mediated motility and formation of the developmental synapse.
While distinct stages of natural killer (NK) cell development have been defined,the molecular interactions that shape human NK cell maturation are poorly understood. Here we define intercellular interactions between developing NK cells and stromal cells which,through contact-dependent mechanisms,promote the generation of mature,functional human NK cells from CD34(+) precursors. We show that developing NK cells undergo unique,developmental stage-specific sustained and transient interactions with developmentally supportive stromal cells,and that the relative motility of NK cells increases as they move through development in vitro and ex vivo. These interactions include the formation of a synapse between developing NK cells and stromal cells,which we term the developmental synapse. Finally,we identify a role for CD56 in developmental synapse structure,NK cell motility and NK cell development. Thus,we define the developmental synapse leading to human NK cell functional maturation.
View Publication
产品类型:
产品号#:
05150
15025
15065
产品名:
MyeloCult™H5100
RosetteSep™人NK细胞富集抗体混合物
RosetteSep™人NK细胞富集抗体混合物
文献
Twu Y-C et al. (MAR 2010)
Blood 115 12 2491--9
Phosphorylation status of transcription factor C/EBPalpha determines cell-surface poly-LacNAc branching (I antigen) formation in erythropoiesis and granulopoiesis.
The cell-surface straight and branched repeats of N-acetyllactosamine (LacNAc) units,called poly-LacNAc chains,characterize the histo-blood group i and I antigens,respectively. The transition of straight to branched poly-LacNAc chain (i to I) is determined by the I locus,which expresses 3 IGnT transcripts,IGnTA,IGnTB,and IGnTC. Our previous investigation demonstrated that the i-to-I transition in erythroid differentiation is regulated by the transcription factor CCAAT/enhancer binding protein alpha (C/EBPalpha). In the present investigation,the K-562 cell line was used as a model to show that the i-to-I transition is determined by the phosphorylation status of the C/EBPalpha Ser-21 residue,with dephosphorylated C/EBPalpha Ser-21 stimulating the transcription of the IGnTC gene,consequently resulting in I branching. Results from studies using adult erythropoietic and granulopoietic progenitor cells agreed with those derived using the K-562 cell model,with lentiviral expression of C/EBPalpha in CD34(+) hematopoietic cells demonstrating that the dephosphorylated form of C/EBPalpha Ser-21 induced the expression of I antigen,granulocytic CD15,and also erythroid CD71 antigens. Taken together,these results demonstrate that the regulation of poly-LacNAc branching (I antigen) formation in erythropoiesis and granulopoiesis share a common mechanism,with dephosphorylation of the Ser-21 residue on C/EBPalpha playing the critical role.
View Publication
产品类型:
产品号#:
09600
09650
产品名:
StemSpan™ SFEM
StemSpan™ SFEM
文献
Barruet E et al. (AUG 2016)
Stem cell research & therapy 7 1 115
The ACVR1 R206H mutation found in fibrodysplasia ossificans progressiva increases human induced pluripotent stem cell-derived endothelial cell formation and collagen production through BMP-mediated SMAD1/5/8 signaling.
BACKGROUND The Activin A and bone morphogenetic protein (BMP) pathways are critical regulators of the immune system and of bone formation. Inappropriate activation of these pathways,as in conditions of congenital heterotopic ossification,are thought to activate an osteogenic program in endothelial cells. However,if and how this occurs in human endothelial cells remains unclear. METHODS We used a new directed differentiation protocol to create human induced pluripotent stem cell (hiPSC)-derived endothelial cells (iECs) from patients with fibrodysplasia ossificans progressiva (FOP),a congenital disease of heterotopic ossification caused by an activating R206H mutation in the Activin A type I receptor (ACVR1). This strategy allowed the direct assay of the cell-autonomous effects of ACVR1 R206H in the endogenous locus without the use of transgenic expression. These cells were challenged with BMP or Activin A ligand,and tested for their ability to activate osteogenesis,extracellular matrix production,and differential downstream signaling in the BMP/Activin A pathways. RESULTS We found that FOP iECs could form in conditions with low or absent BMP4. These conditions are not normally permissive in control cells. FOP iECs cultured in mineralization media showed increased alkaline phosphatase staining,suggesting formation of immature osteoblasts,but failed to show mature osteoblastic features. However,FOP iECs expressed more fibroblastic genes and Collagen 1/2 compared to control iECs,suggesting a mechanism for the tissue fibrosis seen in early heterotopic lesions. Finally,FOP iECs showed increased SMAD1/5/8 signaling upon BMP4 stimulation. Contrary to FOP hiPSCs,FOP iECs did not show a significant increase in SMAD1/5/8 phosphorylation upon Activin A stimulation,suggesting that the ACVR1 R206H mutation has a cell type-specific effect. In addition,we found that the expression of ACVR1 and type II receptors were different in hiPSCs and iECs,which could explain the cell type-specific SMAD signaling. CONCLUSIONS Our results suggest that the ACVR1 R206H mutation may not directly increase the formation of mature chondrogenic or osteogenic cells by FOP iECs. Our results also show that BMP can induce endothelial cell dysfunction,increase expression of fibrogenic matrix proteins,and cause differential downstream signaling of the ACVR1 R206H mutation. This iPSC model provides new insight into how human endothelial cells may contribute to the pathogenesis of heterotopic ossification.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Fiala ES et al. (SEP 1996)
Experientia 52 9 922--6
(-)-Epigallocatechin gallate, a polyphenolic tea antioxidant, inhibits peroxynitrite-mediated formation of 8-oxodeoxyguanosine and 3-nitrotyrosine.
Reaction with peroxynitrite at pH 7.4 and 37 degrees C was found to increase the 8-oxodeoxyguanosine levels in calf thymus DNA 35- 38-fold. This oxidation of deoxyguanosine,as well as the peroxynitrite-mediated nitration of tyrosine to 3-nitrotyrosine,was significantly inhibited by ascorbic acid,glutathione and (-)-epigallocatechin gallate,a polyphenolic antioxidant present in tea. For 50% inhibition of the oxidation of deoxyguanosine to 8-oxodeoxyguanosine,1.1,7.6 or 0.25 mM ascorbate,glutathione or (-)-epigallocatechin gallate,respectively,was required. For 50% inhibition of tyrosine nitration,the respective concentrations were 1.4,4.6 or 0.11 mM. Thus,(-)-epigallocatechin gallate is a significantly better inhibitor of both reactions than either ascorbate or glutathione. Reaction of (-)-epigallocatechin gallate with peroxynitrite alone resulted in the formation of a number of products. Ultraviolet spectra of two of these suggest that the tea polyphenol and/or its oxidation products are nitrated by peroxynitrite.
View Publication
产品类型:
产品号#:
73642
73644
产品名:
(-)-Epigallocatechin Gallate
文献
R. Lorenzetti et al. (jul 2019)
Journal of autoimmunity 101 145--152
Abatacept modulates CD80 and CD86 expression and memory formation in human B-cells.
BACKGROUND Cytotoxic T lymphocyte antigen-4 (CTLA-4) limits T-cell activation and is expressed on T-regulatory cells. Human CTLA-4 deficiency results in severe immune dysregulation. Abatacept (CTLA-4 Ig) is approved for the treatment of rheumatoid arthritis (RA) and its mechanism of action is attributed to effects on T-cells. It is known that CTLA-4 modulates the expression of its ligands CD80 and CD86 on antigen presenting cells (APC) by transendocytosis. As B-cells express CD80/CD86 and function as APC,we hypothesize that B-cells are a direct target of abatacept. OBJECTIVES To investigate direct effects of abatacept on human B-lymphocytes in vitro and in RA patients. METHODS The effect of abatacept on healthy donor B-cells' phenotype,activation and CD80/CD86 expression was studied in vitro. Nine abatacept-treated RA patients were studied. Seven of these were followed up to 24 months,and two up to 12 months only and treatment response,immunoglobulins,ACPA,RF concentrations,B-cell phenotype and ACPA-specific switched memory B-cell frequency were assessed. RESULTS B-cell development was unaffected by abatacept. Abatacept treatment resulted in a dose-dependent decrease of CD80/CD86 expression on B-cells in vitro,which was due to dynamin-dependent internalization. RA patients treated with abatacept showed a progressive decrease in plasmablasts and serum IgG. While ACPA-titers only moderately declined,the frequency of ACPA-specific switched memory B-cells significantly decreased. CONCLUSIONS Abatacept directly targets B-cells by reducing CD80/CD86 expression. Impairment of antigen presentation and T-cell activation may result in altered B-cell selection,providing a new therapeutic mechanism and a base for abatacept use in B-cell mediated autoimmunity.
View Publication
产品类型:
产品号#:
17954
17954RF
产品名:
EasySep™人B细胞分选试剂盒
RoboSep™ 人B细胞分选试剂盒
文献
Fukuda I et al. (FEB 2009)
Chemistry & biology 16 2 133--40
Ginkgolic acid inhibits protein SUMOylation by blocking formation of the E1-SUMO intermediate.
Protein modification by small ubiquitin-related modifier proteins (SUMOs) controls diverse cellular functions. Dysregulation of SUMOylation or deSUMOylation processes has been implicated in the development of cancer and neurodegenerative diseases. However,no small-molecule inhibiting protein SUMOylation has been reported so far. Here,we report inhibition of SUMOylation by ginkgolic acid and its analog,anacardic acid. Ginkgolic acid and anacardic acid inhibit protein SUMOylation both in vitro and in vivo without affecting in vivo ubiquitination. Binding assays with a fluorescently labeled probe showed that ginkgolic acid directly binds E1 and inhibits the formation of the E1-SUMO intermediate. These studies will provide not only a useful tool for investigating the roles of SUMO conjugations in a variety of pathways in cells,but also a basis for the development of drugs targeted against diseases involving aberrant SUMOylation.
View Publication
产品类型:
产品号#:
产品名:
文献
Hikita T et al. (OCT 2010)
Genes to cells : devoted to molecular & cellular mechanisms 15 10 1051--62
Purvalanol A, a CDK inhibitor, effectively suppresses Src-mediated transformation by inhibiting both CDKs and c-Src.
The nonreceptor tyrosine kinase c-Src is frequently over-expressed or hyperactivated in various human cancers and contributes to cancer progression in cooperation with up-regulated growth factor receptors. However,Src-selective anticancer drugs are still in clinical trials. To identify more effective inhibitors of c-Src-mediated cancer progression,we developed a new screening platform using Csk-deficient cells that can be transformed by c-Src. We found that purvalanol A,developed as a CDK inhibitor,potently suppressed the anchorage-independent growth of c-Src-transformed cells,indicating that the activation of CDKs contributes to the c-Src transformation. We also found that purvalanol A suppressed the c-Src activity as effectively as the Src-selective inhibitor PP2,and that it reverted the transformed morphology to a nearly normal shape with less cytotoxicity than PP2. Purvalanol A induced a strong G2-M arrest,whereas PP2 weakly acted on the G1-S transition. Furthermore,when compared with PP2,purvalanol A more effectively suppressed the growth of human colon cancer HT29 and SW480 cells,in which Src family kinases and CDKs are activated. These findings demonstrate that the coordinated inhibition of cell cycle progression and tyrosine kinase signaling by the multi-selective purvalanol A is effective in suppressing cancer progression associated with c-Src up-regulation.
View Publication
产品类型:
产品号#:
产品名:
文献
Pineda JR et al. (APR 2013)
EMBO Molecular Medicine 5 4 548--562
Vascular-derived TGF-β increases in the stem cell niche and perturbs neurogenesis during aging and following irradiation in the adult mouse brain
Neurogenesis decreases during aging and following cranial radiotherapy,causing a progressive cognitive decline that is currently untreatable. However,functional neural stem cells remained present in the subventricular zone of high dose-irradiated and aged mouse brains. We therefore investigated whether alterations in the neurogenic niches are perhaps responsible for the neurogenesis decline. This hypothesis was supported by the absence of proliferation of neural stem cells that were engrafted into the vascular niches of irradiated host brains. Moreover,we observed a marked increase in TGF-β1 production by endothelial cells in the stem cell niche in both middle-aged and irradiated mice. In co-cultures,irradiated brain endothelial cells induced the apoptosis of neural stem/progenitor cells via TGF-β/Smad3 signalling. Strikingly,the blockade of TGF-β signalling in vivo using a neutralizing antibody or the selective inhibitor SB-505124 significantly improved neurogenesis in aged and irradiated mice,prevented apoptosis and increased the proliferation of neural stem/progenitor cells. These findings suggest that anti-TGF-β-based therapy may be used for future interventions to prevent neurogenic collapse following radiotherapy or during aging.
View Publication