Warmflash A et al. (AUG 2014)
Nature methods 11 8 847--54
A method to recapitulate early embryonic spatial patterning in human embryonic stem cells.
Embryos allocate cells to the three germ layers in a spatially ordered sequence. Human embryonic stem cells (hESCs) can generate the three germ layers in culture; however,differentiation is typically heterogeneous and spatially disordered. We show that geometric confinement is sufficient to trigger self-organized patterning in hESCs. In response to BMP4,colonies reproducibly differentiated to an outer trophectoderm-like ring,an inner ectodermal circle and a ring of mesendoderm expressing primitive-streak markers in between. Fates were defined relative to the boundary with a fixed length scale: small colonies corresponded to the outer layers of larger ones. Inhibitory signals limited the range of BMP4 signaling to the colony edge and induced a gradient of Activin-Nodal signaling that patterned mesendodermal fates. These results demonstrate that the intrinsic tendency of stem cells to make patterns can be harnessed by controlling colony geometries and provide a quantitative assay for studying paracrine signaling in early development.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Du L et al. (MAY 2016)
Journal of applied toxicology : JAT 36 5 659--668
BDE-209 inhibits pluripotent genes expression and induces apoptosis in human embryonic stem cells.
Decabromodiphenyl ether (BDE-209) has been detected in human serum,semen,placenta,cord blood and milk worldwide. However,little is known regarding the potential effects on the early human embryonic development of BDE-209. In this study,human embryonic stem cell lines FY-hES-10 and FY-hES-26 were used to evaluate the potential effects and explore the toxification mechanisms using low-level BDE-209 exposure. Our data showed that BDE-209 exposure (1,10 and 100 nM) reduced the expression of pluripotent genes such as OCT4,SOX2 and NANOG and induced human embryonic stem cells (hESCs) apoptosis. The downregulation of BIRC5/BCL2 and upregulation of BAX were related to apoptosis of hESCs induced by BDE-209 exposure. A mechanism study showed that OCT4 down-regulation accompanied by OCT4 promoter hypermethylation and increasing miR-145/miR-335 levels,OCT4 inhibitors. Moreover,BDE-209 could increase the generation of intracellular reactive oxygen species (ROS) and decrease SOD2 expression. The ROS increase and OCT4 downregulation after BDE-209 exposure could be reversed partly by antioxidant N-acetylcysteine supplement. These findings showed that BDE-209 exposure could decrease pluripotent genes expression via epigenetic regulation and induce apoptosis through ROS generation in human embryonic stem cells in vitro.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Vegas AJ et al. (MAR 2016)
Nature medicine 22 3 306--311
Long-term glycemic control using polymer-encapsulated human stem cell-derived beta cells in immune-competent mice.
The transplantation of glucose-responsive,insulin-producing cells offers the potential for restoring glycemic control in individuals with diabetes. Pancreas transplantation and the infusion of cadaveric islets are currently implemented clinically,but these approaches are limited by the adverse effects of immunosuppressive therapy over the lifetime of the recipient and the limited supply of donor tissue. The latter concern may be addressed by recently described glucose-responsive mature beta cells that are derived from human embryonic stem cells (referred to as SC-$\$),which may represent an unlimited source of human cells for pancreas replacement therapy. Strategies to address the immunosuppression concerns include immunoisolation of insulin-producing cells with porous biomaterials that function as an immune barrier. However,clinical implementation has been challenging because of host immune responses to the implant materials. Here we report the first long-term glycemic correction of a diabetic,immunocompetent animal model using human SC-$\$ SC-$\$ were encapsulated with alginate derivatives capable of mitigating foreign-body responses in vivo and implanted into the intraperitoneal space of C57BL/6J mice treated with streptozotocin,which is an animal model for chemically induced type 1 diabetes. These implants induced glycemic correction without any immunosuppression until their removal at 174 d after implantation. Human C-peptide concentrations and in vivo glucose responsiveness demonstrated therapeutically relevant glycemic control. Implants retrieved after 174 d contained viable insulin-producing cells.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Yabe S et al. (MAY 2016)
Proceedings of the National Academy of Sciences of the United States of America 113 19 E2598----607
Comparison of syncytiotrophoblast generated from human embryonic stem cells and from term placentas.
Human embryonic stem cells (ESCs) readily commit to the trophoblast lineage after exposure to bone morphogenetic protein-4 (BMP-4) and two small compounds,an activin A signaling inhibitor and a FGF2 signaling inhibitor (BMP4/A83-01/PD173074; BAP treatment). During differentiation,areas emerge within the colonies with the biochemical and morphological features of syncytiotrophoblast (STB). Relatively pure fractions of mononucleated cytotrophoblast (CTB) and larger syncytial sheets displaying the expected markers of STB can be obtained by differential filtration of dispersed colonies through nylon strainers. RNA-seq analysis of these fractions has allowed them to be compared with cytotrophoblasts isolated from term placentas before and after such cells had formed syncytia. Although it is clear from extensive gene marker analysis that both ESC- and placenta-derived syncytial cells are trophoblast,each with the potential to transport a wide range of solutes and synthesize placental hormones,their transcriptome profiles are sufficiently dissimilar to suggest that the two cell types have distinct pedigrees and represent functionally different kinds of STB. We propose that the STB generated from human ESCs represents the primitive syncytium encountered in early pregnancy soon after the human trophoblast invades into the uterine wall.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Singh AM et al. (APR 2016)
Methods in molecular biology (Clifton,N.J.)
Decoding the Epigenetic Heterogeneity of Human Pluripotent Stem Cells with Seamless Gene Editing.
Pluripotent stem cells exhibit cell cycle-regulated heterogeneity for trimethylation of histone-3 on lysine-4 (H3K4me3) on developmental gene promoters containing bivalent epigenetic domains. The heterogeneity of H3K4me3 can be attributed to Cyclin-dependent kinase-2 (CDK2) phosphorylation and activation of the histone methyltransferase,MLL2 (KMT2B),during late-G1. The deposition of H3K4me3 on developmental promoters in late-G1 establishes a permissive chromatin architecture that enables signaling cues to promote differentiation from the G1 phase. These data suggest that the inhibition of MLL2 phosphorylation and activation will prevent the initiation of differentiation. Here,we describe a method to seamlessly modify a putative CDK2 phosphorylation site on MLL2 to restrict its phosphorylation and activation. Specifically,by utilizing dimeric CRISPR RNA-guided nucleases,RFNs (commercially known as the NextGEN™ CRISPR),in combination with an excision-only piggyBac™ transposase,we demonstrate how to generate a point mutation of threonine-542,a predicted site to prevent MLL2 activation. This gene editing method enables the use of both positive and negative selection,and allows for subsequent removal of the donor cassette without leaving behind any unwanted DNA sequences or modifications. This seamless donor-excision" approach provides clear advantages over using single stranded oligo-deoxynucleotides (ssODN) as donors to create point mutations�
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Borowiak M et al. (APR 2009)
Cell stem cell 4 4 348--58
Small molecules efficiently direct endodermal differentiation of mouse and human embryonic stem cells.
An essential step for therapeutic and research applications of stem cells is the ability to differentiate them into specific cell types. Endodermal cell derivatives,including lung,liver,and pancreas,are of interest for regenerative medicine,but efforts to produce these cells have been met with only modest success. In a screen of 4000 compounds,two cell-permeable small molecules were indentified that direct differentiation of ESCs into the endodermal lineage. These compounds induce nearly 80% of ESCs to form definitive endoderm,a higher efficiency than that achieved by Activin A or Nodal,commonly used protein inducers of endoderm. The chemically induced endoderm expresses multiple endodermal markers,can participate in normal development when injected into developing embryos,and can form pancreatic progenitors. The application of small molecules to differentiate mouse and human ESCs into endoderm represents a step toward achieving a reproducible and efficient production of desired ESC derivatives.
View Publication
产品类型:
产品号#:
72314
72512
72514
产品名:
(-) -Indolactam V(吲哚内酰胺 V)
IDE1
IDE1
文献
Stingl J et al. (MAY 2001)
Breast cancer research and treatment 67 2 93--109
Characterization of bipotent mammary epithelial progenitor cells in normal adult human breast tissue.
The purpose of the present study was to characterize primitive epithelial progenitor populations present in adult normal human mammary tissue using a combination of flow cytometry and in vitro colony assay procedures. Three types of human breast epithelial cell (HBEC) progenitors were identified: luminal-restricted,myoepithelial-restricted and bipotent progenitors. The first type expressed epithelial cell adhesion molecule (EpCAM),alpha6 integrin and MUC1 and generated colonies composed exclusively of cells positive for the luminal-associated markers keratin 8/18,keratin 19,EpCAM and MUC1. Bipotent progenitors produced colonies containing a central core of cells expressing luminal markers surrounded by keratin 14+ myoepithelial-like cells. Single cell cultures confirmed the bipotentiality of these progenitors. Their high expression of alpha6 integrin and low expression of MUC1 suggests a basal position of these cells in the mammary epithelium in vivo. Serial passage in vitro of an enriched population of bipotent progenitors demonstrated that only myoepithelial-restricted progenitors could be readily generated under the culture conditions used. These results support a hierarchical branching model of HBEC progenitor differentiation from a primitive uncommitted cell to luminal- and myoepithelial-restricted progenitors.
View Publication
产品类型:
产品号#:
01700
01705
05601
05610
产品名:
ALDEFLUOR™工具
ALDEFLUOR™DEAB试剂
EpiCult™-B 人培养基
EpiCult™-B 小鼠培养基
文献
Son M-Y et al. (JAN 2017)
Stem cells and development 26 2 133--145
Biomarker Discovery by Modeling Behçet's Disease with Patient-Specific Human Induced Pluripotent Stem Cells.
Behçet's disease (BD) is a chronic inflammatory and multisystemic autoimmune disease of unknown etiology. Due to the lack of a specific test for BD,its diagnosis is very difficult and therapeutic options are limited. Induced pluripotent stem cell (iPSC) technology,which provides inaccessible disease-relevant cell types,opens a new era for disease treatment. In this study,we generated BD iPSCs from patient somatic cells and differentiated them into hematopoietic precursor cells (BD iPSC-HPCs) as BD model cells. Based on comparative transcriptome analysis using our BD model cells,we identified eight novel BD-specific genes,AGTR2,CA9,CD44,CXCL1,HTN3,IL-2,PTGER4,and TSLP,which were differentially expressed in BD patients compared with healthy controls or patients with other immune diseases. The use of CXCL1 as a BD biomarker was further validated at the protein level using both a BD iPSC-HPC-based assay system and BD patient serum samples. Furthermore,we show that our BD iPSC-HPC-based drug screening system is highly effective for testing CXCL1 BD biomarkers,as determined by monitoring the efficacy of existing anti-inflammatory drugs. Our results shed new light on the usefulness of patient-specific iPSC technology in the development of a benchmarking platform for disease-specific biomarkers,phenotype- or target-driven drug discovery,and patient-tailored therapies.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
O'Brien CM et al. (DEC 2016)
Stem cells (Dayton,Ohio)
New Monoclonal Antibodies to Defined Cell Surface Proteins on Human Pluripotent Stem Cells.
The study and application of human pluripotent stem cells (hPSCs) will be enhanced by the availability of well-characterised monoclonal antibodies (mAbs) detecting cell-surface epitopes. Here we report generation of seven new mAbs that detect cell surface proteins present on live and fixed human ES cells (hESCs) and human iPS cells (hiPSCs),confirming our previous prediction that these proteins were present on the cell surface of hPSCs. The mAbs all show a high correlation with POU5F1 (OCT4) expression and other hPSC surface markers (TRA-160 and SSEA-4) in hPSC cultures and detect rare OCT4 positive cells in differentiated cell cultures. These mAbs are immunoreactive to cell surface protein epitopes on both primed and naive state hPSCs,providing useful research tools to investigate the cellular mechanisms underlying human pluripotency and states of cellular reprogramming. In addition,we report that subsets of the seven new mAbs are also immunoreactive to human bone marrow-derived mesenchymal stem cells (MSCs),normal human breast subsets and both normal and tumorigenic colorectal cell populations. The mAbs reported here should accelerate the investigation of the nature of pluripotency,and enable development of robust cell separation and tracing technologies to enrich or deplete for hPSCs and other human stem and somatic cell types. This article is protected by copyright. All rights reserved.
View Publication
产品类型:
产品号#:
产品名:
文献
Diniz B et al. (JUL 2013)
Investigative Ophthalmology and Visual Science 54 7 5087--5096
Subretinal Implantation of Retinal Pigment Epithelial Cells Derived From Human Embryonic Stem Cells: Improved Survival When Implanted as a Monolayer
PURPOSE: To evaluate cell survival and tumorigenicity of human embryonic stem cell-derived retinal pigment epithelium (hESC-RPE) transplantation in immunocompromised nude rats. Cells were transplanted as a cell suspension (CS) or as a polarized monolayer plated on a parylene membrane (PM).backslashnbackslashnMETHODS: Sixty-nine rats (38 male,31 female) were surgically implanted with CS (n = 33) or PM (n = 36). Cohort subsets were killed at 1,6,and 12 months after surgery. Both ocular tissues and systemic organs (brain,liver,kidneys,spleen,heart,and lungs) were fixed in 4% paraformaldehyde,embedded in paraffin,and sectioned. Every fifth section was stained with hematoxylin and eosin and analyzed histologically. Adjacent sections were processed for immunohistochemical analysis (as needed) using the following antibodies: anti-RPE65 (RPE-specific marker),anti-TRA-1-85 (human cell marker),anti-Ki67 (proliferation marker),anti-CD68 (macrophage),and anti-cytokeratin (epithelial marker).backslashnbackslashnRESULTS: The implanted cells were immunopositive for the RPE65 and TRA-1-85. Cell survival (P = 0.006) and the presence of a monolayer (P textless 0.001) of hESC-RPE were significantly higher in eyes that received the PM. Gross morphological and histological analysis of the eye and the systemic organs after the surgery revealed no evidence of tumor or ectopic tissue formation in either group.backslashnbackslashnCONCLUSIONS: hESC-RPE can survive for at least 12 months in an immunocompromised animal model. Polarized monolayers of hESC-RPE show improved survival compared to cell suspensions. The lack of teratoma or any ectopic tissue formation in the implanted rats bodes well for similar results with respect to safety in human subjects.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Poon E et al. (JUN 2015)
Circulation. Cardiovascular genetics 8 3 427--436
Proteomic Analysis of Human Pluripotent Stem Cell-Derived, Fetal, and Adult Ventricular Cardiomyocytes Reveals Pathways Crucial for Cardiac Metabolism and Maturation
BACKGROUND Differentiation of pluripotent human embryonic stem cells (hESCs) to the cardiac lineage represents a potentially unlimited source of ventricular cardiomyocytes (VCMs),but hESC-VCMs are developmentally immature. Previous attempts to profile hESC-VCMs primarily relied on transcriptomic approaches,but the global proteome has not been examined. Furthermore,most hESC-CM studies focus on pathways important for cardiac differentiation,rather than regulatory mechanisms for CM maturation. We hypothesized that gene products and pathways crucial for maturation can be identified by comparing the proteomes of hESCs,hESC-derived VCMs,human fetal and human adult ventricular and atrial CMs. METHODS AND RESULTS Using two-dimensional-differential-in-gel electrophoresis,121 differentially expressed (textgreater1.5-fold; Ptextless0.05) proteins were detected. The data set implicated a role of the peroxisome proliferator-activated receptor $\$ in cardiac maturation. Consistently,WY-14643,a peroxisome proliferator-activated receptor $\$,increased fatty oxidative enzyme level,hyperpolarized mitochondrial membrane potential and induced a more organized morphology. Along this line,treatment with the thyroid hormone triiodothyronine increased the dynamic tension developed in engineered human ventricular cardiac microtissue by 3-fold,signifying their maturation. CONCLUSIONS We conclude that the peroxisome proliferator-activated receptor $\$ thyroid hormone pathways modulate the metabolism and maturation of hESC-VCMs and their engineered tissue constructs. These results may lead to mechanism-based methods for deriving mature chamber-specific CMs.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Asokan R et al. (JUL 2006)
Journal of immunology (Baltimore,Md. : 1950) 177 1 383--94
Characterization of human complement receptor type 2 (CR2/CD21) as a receptor for IFN-alpha: a potential role in systemic lupus erythematosus.
Human complement receptor type 2 (CR2/CD21) is a B lymphocyte membrane glycoprotein that plays a central role in the immune responses to foreign Ags as well as the development of autoimmunity to nuclear Ags in systemic lupus erythematosus. In addition to these three well-characterized ligands,C3d/iC3b,EBV-gp350,and CD23,a previous study has identified CR2 as a potential receptor for IFN-alpha. IFN-alpha,a multifunctional cytokine important in the innate immune system,has recently been proposed to play a major pathogenic role in the development of systemic lupus erythematosus in humans and mice. In this study,we have shown using surface plasmon resonance and ELISA approaches that CR2 will bind IFN-alpha in the same affinity range as the other three well-characterized ligands studied in parallel. In addition,we show that IFN-alpha interacts with short consensus repeat domains 1 and 2 in a region that serves as the ligand binding site for C3d/iC3b,EBV-gp350,and CD23. Finally,we show that treatment of purified human peripheral blood B cells with the inhibitory anti-CR2 mAb 171 diminishes the induction of IFN-alpha-responsive genes. Thus,IFN-alpha represents a fourth class of extracellular ligands for CR2 and interacts with the same domain as the other three ligands. Defining the role of CR2 as compared with the well-characterized type 1 IFN-alpha receptor 1 and 2 in mediating innate immune and autoimmune roles of this cytokine should provide additional insights into the biologic roles of this interaction.
View Publication