Recurrent gain of chromosomes 17q and 12 in cultured human embryonic stem cells.
We have observed karyotypic changes involving the gain of chromosome 17q in three independent human embryonic stem (hES) cell lines on five independent occasions. A gain of chromosome 12 was seen occasionally. This implies that increased dosage of chromosome 17q and 12 gene(s) provides a selective advantage for the propagation of undifferentiated hES cells. These observations are instructive for the future application of hES cells in transplantation therapies in which the use of aneuploid cells could be detrimental.
View Publication
产品类型:
产品号#:
05859
85850
85857
77003
产品名:
FreSR™- S
mTeSR™1
mTeSR™1
CellAdhere™ 层粘连蛋白-521
文献
Tan H-K et al. (MAY 2014)
Stem cells translational medicine 3 5 586--98
Human finger-prick induced pluripotent stem cells facilitate the development of stem cell banking.
Induced pluripotent stem cells (iPSCs) derived from somatic cells of patients can be a good model for studying human diseases and for future therapeutic regenerative medicine. Current initiatives to establish human iPSC (hiPSC) banking face challenges in recruiting large numbers of donors with diverse diseased,genetic,and phenotypic representations. In this study,we describe the efficient derivation of transgene-free hiPSCs from human finger-prick blood. Finger-prick sample collection can be performed on a do-it-yourself" basis by donors and sent to the hiPSC facility for reprogramming. We show that single-drop volumes of finger-prick samples are sufficient for performing cellular reprogramming�
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
09600
09650
85850
85857
85870
85875
产品名:
StemSpan™ SFEM
StemSpan™ SFEM
mTeSR™1
mTeSR™1
文献
Tadeu AMB et al. (APR 2015)
PLoS ONE 10 4 e0122493
Transcriptional profiling of ectoderm specification to keratinocyte fate in human embryonic stem cells
In recent years,several studies have shed light into the processes that regulate epidermal specification and homeostasis. We previously showed that a broad-spectrum γ-secretase inhibitor DAPT promoted early keratinocyte specification in human embryonic stem cells triggered to undergo ectoderm specification. Here,we show that DAPT accelerates human embryonic stem cell differentiation and induces expression of the ectoderm protein AP2. Furthermore,we utilize RNA sequencing to identify several candidate regulators of ectoderm specification including those involved in epithelial and epidermal development in human embryonic stem cells. Genes associated with transcriptional regulation and growth factor activity are significantly enriched upon DAPT treatment during specification of human embryonic stem cells to the ectoderm lineage. The human ectoderm cell signature identified in this study contains several genes expressed in ectodermal and epithelial tissues. Importantly,these genes are also associated with skin disorders and ectodermal defects,providing a platform for understanding the biology of human epidermal keratinocyte development under diseased and homeostatic conditions.
View Publication
产品类型:
产品号#:
07913
85850
85857
产品名:
Dispase(5 U/mL)
mTeSR™1
mTeSR™1
文献
Fu X et al. (FEB 2016)
Plos One 11 2 e0148819
High-Dose Fluoride Impairs the Properties of Human Embryonic Stem Cells via JNK Signaling
Fluoride is a ubiquitous natural substance that is often used in dental products to prevent dental caries. The biphasic actions of fluoride imply that excessive systemic exposure to fluoride can cause harmful effects on embryonic development in both animal models and humans. However,insufficient information is available on the effects of fluoride on human embryonic stem cells (hESCs),which is a novel in vitro humanized model for analyzing the embryotoxicities of chemical compounds. Therefore,we investigated the effects of sodium fluoride (NaF) on the proliferation,differentiation and viability of H9 hESCs. For the first time,we showed that 1 mM NaF did not significantly affect the proliferation of hESCs but did disturb the gene expression patterns of hESCs during embryoid body (EB) differentiation. Higher doses of NaF (2 mM and above) markedly decreased the viability and proliferation of hESCs. The mode and underlying mechanism of high-dose NaF-induced cell death were further investigated by assessing the sub-cellular morphology,mitochondrial membrane potential (MMP),caspase activities,cellular reactive oxygen species (ROS) levels and activation of mitogen-activated protein kinases (MAPKs). High-dose NaF caused the death of hESCs via apoptosis in a caspase-mediated but ROS-independent pathway,coupled with an increase in the phospho-c-Jun N-terminal kinase (p-JNK) levels. Pretreatment with a pJNK-specific inhibitor (SP600125) could effectively protect hESCs from NaF-induced cell death in a concentration- and time-dependent manner. These findings suggest that NaF might interfere with early human embryogenesis by disturbing the specification of the three germ layers as well as osteogenic lineage commitment and that high-dose NaF could cause apoptosis through a JNK-dependent pathway in hESCs.
View Publication
产品类型:
产品号#:
07920
85850
85857
产品名:
ACCUTASE™
mTeSR™1
mTeSR™1
文献
Yang Q et al. (NOV 2015)
Stem cell research 15 3 640--642
Human embryonic stem cells derived from abnormal blastocyst donated by Marfan syndrome patient.
Human embryonic stem cell (hESC) line was derived from abnormal blastocyst donated by Marfan syndrome patient after preimpantation genetic diagnosis (PGD) treatment. DNA sequencing analysis confirmed that the hESC line carried the heterozygous deletion mutation,c.3536delA,of FBN1 gene. Characteristic tests proved that the hESC line presented typicalmarkers of pluripotency and had the capability to formthe three germlayers both in vitro and in vivo.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Bueno C et al. (SEP 2009)
Carcinogenesis 30 9 1628--37
Etoposide induces MLL rearrangements and other chromosomal abnormalities in human embryonic stem cells.
MLL rearrangements are hallmark genetic abnormalities in infant leukemia known to arise in utero. They can be induced during human prenatal development upon exposure to etoposide. We also hypothesize that chronic exposure to etoposide might render cells more susceptible to other genomic insults. Here,for the first time,human embryonic stem cells (hESCs) were used as a model to test the effects of etoposide on human early embryonic development. We addressed whether: (i) low doses of etoposide promote MLL rearrangements in hESCs and hESCs-derived hematopoietic cells; (ii) MLL rearrangements are sufficient to confer hESCs with a selective growth advantage and (iii) continuous exposure to low doses of etoposide induces hESCs to acquire other chromosomal abnormalities. In contrast to cord blood-derived CD34(+) and hESC-derived hematopoietic cells,exposure of undifferentiated hESCs to a single low dose of etoposide induced a pronounced cell death. Etoposide induced MLL rearrangements in hESCs and their hematopoietic derivatives. After long-term culture,the proportion of hESCs harboring MLL rearrangements diminished and neither cell cycle variations nor genomic abnormalities were observed in the etoposide-treated hESCs,suggesting that MLL rearrangements are insufficient to confer hESCs with a selective proliferation/survival advantage. However,continuous exposure to etoposide induced MLL breaks and primed hESCs to acquire other major karyotypic abnormalities. These data show that chronic exposure of developmentally early stem cells to etoposide induces MLL rearrangements and make hESCs more prone to acquire other chromosomal abnormalities than postnatal CD34(+) cells,linking embryonic genotoxic exposure to genomic instability.
View Publication
产品类型:
产品号#:
07800
07850
09600
09650
产品名:
氯化铵溶液
氯化铵溶液
StemSpan™ SFEM
StemSpan™ SFEM
文献
Hui Z et al. (OCT 2009)
Stem Cells 27 10 2435--2445
Lack of ABCG2 expression and side population properties in human pluripotent stem cells
The multidrug transporter ABCG2 in cell membranes enables various stem cells and cancer cells to efflux chemicals,including the fluorescent dye Hoechst 33342. The Hoechst(-) cells can be sorted out as a side population with stem cell properties. Abcg2 expression in mouse embryonic stem cells (ESCs) reduces accumulation of DNA-damaging metabolites in the cells,which helps prevent cell differentiation. Surprisingly,we found that human ESCs do not express ABCG2 and cannot efflux Hoechst. In contrast,trophoblasts and neural epithelial cells derived from human ESCs are ABCG2(+) and Hoechst(-). Human ESCs ectopically expressing ABCG2 become Hoechst(-),more tolerant of toxicity of mitoxantrone,a substrate of ABCG2,and more capable of self-renewal in basic fibroblast growth factor (bFGF)-free condition than control cells. However,Hoechst(low) cells sorted as a small subpopulation from human ESCs express lower levels of pluripotency markers than the Hoechst(high) cells. Similar results were observed with human induced pluripotent stem cells. Conversely,mouse ESCs are Abcg2(+) and mouse trophoblasts,Abcg2(-). Thus,absence of ABCG2 is a novel feature of human pluripotent stem cells,which distinguishes them from many other stem cells including mouse ESCs,and may be a reason why they are sensitive to suboptimal culture conditions.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Vaziri H et al. (MAY 2010)
Regenerative medicine 5 3 345--363
Spontaneous reversal of the developmental aging of normal human cells following transcriptional reprogramming.
AIM: To determine whether transcriptional reprogramming is capable of reversing the developmental aging of normal human somatic cells to an embryonic state. MATERIALS & METHODS: An isogenic system was utilized to facilitate an accurate assessment of the reprogramming of telomere restriction fragment (TRF) length of aged differentiated cells to that of the human embryonic stem (hES) cell line from which they were originally derived. An hES-derived mortal clonal cell strain EN13 was reprogrammed by SOX2,OCT4 and KLF4. The six resulting induced pluripotent stem (iPS) cell lines were surveyed for telomere length,telomerase activity and telomere-related gene expression. In addition,we measured all these parameters in widely-used hES and iPS cell lines and compared the results to those obtained in the six new isogenic iPS cell lines. RESULTS: We observed variable but relatively long TRF lengths in three widely studied hES cell lines (16.09-21.1 kb) but markedly shorter TRF lengths (6.4-12.6 kb) in five similarly widely studied iPS cell lines. Transcriptome analysis comparing these hES and iPS cell lines showed modest variation in a small subset of genes implicated in telomere length regulation. However,iPS cell lines consistently showed reduced levels of telomerase activity compared with hES cell lines. In order to verify these results in an isogenic background,we generated six iPS cell clones from the hES-derived cell line EN13. These iPS cell clones showed initial telomere lengths comparable to the parental EN13 cells,had telomerase activity,expressed embryonic stem cell markers and had a telomere-related transcriptome similar to hES cells. Subsequent culture of five out of six lines generally showed telomere shortening to lengths similar to that observed in the widely distributed iPS lines. However,the clone EH3,with relatively high levels of telomerase activity,progressively increased TRF length over 60 days of serial culture back to that of the parental hES cell line. CONCLUSION: Prematurely aged (shortened) telomeres appears to be a common feature of iPS cells created by current pluripotency protocols. However,the spontaneous appearance of lines that express sufficient telomerase activity to extend telomere length may allow the reversal of developmental aging in human cells for use in regenerative medicine.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Male V et al. (OCT 2010)
Journal of immunology (Baltimore,Md. : 1950) 185 7 3913--8
Immature NK cells, capable of producing IL-22, are present in human uterine mucosa.
NK cells are the dominant population of immune cells in the endometrium in the secretory phase of the menstrual cycle and in the decidua in early pregnancy. The possibility that this is a site of NK cell development is of particular interest because of the cyclical death and regeneration of the NK population during the menstrual cycle. To investigate this,we searched for NK developmental stages 1-4,based on expression of CD34,CD117,and CD94. In this study,we report that a heterogeneous population of stage 3 NK precursor (CD34(-)CD117(+)CD94(-)) and mature stage 4 NK (CD34(-)CD117(-/+)CD94(+)) cells,but not multipotent stages 1 and 2 (CD34(+)),are present in the uterine mucosa. Cells within the uterine stage 3 population are able to give rise to mature stage 4-like cells in vitro but also produce IL-22 and express RORC and LTA. We also found stage 3 cells with NK progenitor potential in peripheral blood. We propose that stage 3 cells are recruited from the blood to the uterus and mature in the uterine microenvironment to become distinctive uterine NK cells. IL-22 producers in this population might have a physiological role in this specialist mucosa dedicated to reproduction.
View Publication
产品类型:
产品号#:
产品名:
文献
Sokolov MV et al. (JAN 2012)
PLoS ONE 7 2 e31028
Unraveling the global microRNAome responses to ionizing radiation in human embryonic stem cells
MicroRNAs (miRNA) comprise a group of short ribonucleic acid molecules implicated in regulation of key biological processes and functions at the post-transcriptional level. Ionizing radiation (IR) causes DNA damage and generally triggers cellular stress response. However,the role of miRNAs in IR-induced response in human embryonic stem cells (hESC) has not been defined yet. Here,by using system biology approaches,we show for the first time,that miRNAome undergoes global alterations in hESC (H1 and H9 lines) after IR. Interrogation of expression levels of 1,090 miRNA species in irradiated hESC showed statistically significant changes in 54 genes following 1 Gy of X-ray exposures; global miRNAome alterations were found to be highly temporally and cell line--dependent in hESC. Time-course studies showed that the 16 hr miRNAome radiation response of hESC is much more robust compared to 2 hr-response signature (only eight genes),and may be involved in regulating the cell cycle. Quantitative real-time PCR performed on some miRNA species confirms the robustness of our miRNA microarray platform. Positive regulation of differentiation-,cell cycle-,ion transport- and endomembrane system-related processes were predicted to be negatively affected by miRNAome changes in irradiated hESC. Our findings reveal a fundamental role of miRNAome in modulating the radiation response,and identify novel molecular targets of radiation in hESC.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Amita M et al. (MAR 2013)
Proceedings of the National Academy of Sciences of the United States of America 110 13 E1212--E1221
Complete and unidirectional conversion of human embryonic stem cells to trophoblast by BMP4
Human ES cells (hESC) exposed to bone morphogenic protein 4 (BMP4) in the absence of FGF2 have become widely used for studying trophoblast development,but the soundness of this model has been challenged by others,who concluded that differentiation was primarily toward mesoderm rather than trophoblast. Here we confirm that hESC grown under the standard conditions on a medium conditioned by mouse embryonic fibroblasts in the presence of BMP4 and absence of FGF2 on a Matrigel substratum rapidly convert to an epithelium that is largely KRT7+ within 48 h,with minimal expression of mesoderm markers,including T (Brachyury). Instead,they begin to express a series of trophoblast markers,including HLA-G,demonstrate invasive properties that are independent of the continued presence of BMP4 in the medium,and,over time,produce extensive amounts of human chorionic gonadotropin,progesterone,placental growth factor,and placental lactogen. This process of differentiation is not dependent on conditioning of the medium by mouse embryonic fibroblasts and is accelerated in the presence of inhibitors of Activin and FGF2 signaling,which at day 2 provide colonies that are entirely KRT7+ and in which the majority of cells are transiently CDX2+. Colonies grown on two chemically defined media,including the one in which BMP4 was reported to drive mesoderm formation,also differentiate at least partially to trophoblast in response to BMP4. The experiments demonstrate that the in vitro BMP4/hESC model is valid for studying the emergence and differentiation of trophoblasts.
View Publication
产品类型:
产品号#:
07923
85850
85857
产品名:
Dispase (1 U/mL)
mTeSR™1
mTeSR™1
文献
Narla RK et al. ( 1998)
Clinical cancer research : an official journal of the American Association for Cancer Research 4 6 1405--1414
4-(3'-Bromo-4'hydroxylphenyl)-amino-6,7-dimethoxyquinazoline: a novel quinazoline derivative with potent cytotoxic activity against human glioblastoma cells.
The novel quinazoline derivative 4-(3'-bromo-4'-hydroxylphenyl)-amino-6,7-dimethoxyquinazoline (WHI-P154) exhibited significant cytotoxicity against U373 and U87 human glioblastoma cell lines,causing apoptotic cell death at micromolar concentrations. The in vitro antiglioblastoma activity of WHI-P154 was amplified textgreater 200-fold and rendered selective by conjugation to recombinant human epidermal growth factor (EGF). The EGF-P154 conjugate was able to bind to and enter target glioblastoma cells within 10-30 min via receptor (R)-mediated endocytosis by inducing internalization of the EGF-R molecules. In vitro treatment with EGF-P154 resulted in killing of glioblastoma cells at nanomolar concentrations with an IC50 of 813 +/- 139 nM,whereas no cytotoxicity against EGF-R-negative leukemia cells was observed,even at concentrations as high as 100 microM. The in vivo administration of EGF-P154 resulted in delayed tumor progression and improved tumor-free survival in a severe combined immunodeficient mouse glioblastoma xenograft model. Whereas none of the control mice remained alive tumor-free beyond 33 days (median tumor-free survival,19 days) and all control mice had tumors that rapidly progressed to reach an average size of textgreater 500 mm3 by 58 days,40% of mice treated for 10 consecutive days with 1 mg/kg/day EGF-P154 remained alive and free of detectable tumors for more than 58 days with a median tumor-free survival of 40 days. The tumors developing in the remaining 60% of the mice never reached a size textgreater 50 mm3. Thus,targeting WHI-P154 to the EGF-R may be useful in the treatment of glioblastoma multiforme.
View Publication