Anderson AE et al. (FEB 2009)
Journal of leukocyte biology 85 2 243--50
LPS activation is required for migratory activity and antigen presentation by tolerogenic dendritic cells.
Autoimmune pathologies are caused by a breakdown in self-tolerance. Tolerogenic dendritic cells (tolDC) are a promising immunotherapeutic tool for restoring self-tolerance in an antigen-specific manner. Studies about tolDC have focused largely on generating stable maturation-resistant DC,but few have fully addressed questions about the antigen-presenting and migratory capacities of these cells,prerequisites for successful immunotherapy. Here,we investigated whether human tolDC,generated with dexamethasone and the active form of vitamin D3,maintained their tolerogenic function upon activation with LPS (LPS-tolDC),while acquiring the ability to present exogenous autoantigen and to migrate in response to the CCR7 ligand CCL19. LPS activation led to important changes in the tolDC phenotype and function. LPS-tolDC,but not tolDC,expressed the chemokine receptor CCR7 and migrated in response to CCL19. Furthermore,LPS-tolDC were superior to tolDC in their ability to present type II collagen,a candidate autoantigen in rheumatoid arthritis. tolDC and LPS-tolDC had low stimulatory capacity for allogeneic,naïve T cells and skewed T cell polarization toward an anti-inflammatory phenotype,although LPS-tolDC induced significantly higher levels of IL-10 production by T cells. Our finding that LPS activation is essential for inducing migratory and antigen-presenting activity in tolDC is important for optimizing their therapeutic potential.
View Publication
产品类型:
产品号#:
18259
18259RF
产品名:
文献
L. Fr\'egeau-Proulx et al. ( 2022)
MethodsX 9 101843
FACS-Free isolation and purification protocol of mouse prostate epithelial cells for organoid primary culture.
The prostate is a gland that contributes to men's fertility. It is highly responsive to androgens and is often the site of carcinogenesis,as prostate cancer is the most frequent cancer in men in over a hundred countries. To study the normal prostate,few in vitro models exist,and most of them do not express the androgen receptor (AR). To overcome this issue,prostate epithelial cells can be grown in primary culture ex vivo in 2- and 3-dimensional culture (organoids). However,methods to purify these cells often require flow cytometry,thus necessitating specialized instruments and expertise. Herein,we present a detailed protocol for the harvest,purification,and primary culture of mouse prostate epithelial cells to grow prostate organoids ex vivo. This protocol does not require flow cytometry approaches,facilitating its implementation in most research laboratories,and organoids grown with this protocol are highly responsive to androgens. In summary,we present a new simple method that can be used to grow prostate organoids that recapitulate the androgen response of this gland in vivo.
View Publication
产品类型:
产品号#:
78003
78006
17666
产品名:
重组人bFGF
重组人EGF
EasySep™小鼠PE正选试剂盒II
文献
Palmer JA et al. (AUG 2013)
Birth Defects Research Part B - Developmental and Reproductive Toxicology 98 4 343--363
Establishment and assessment of a new human embryonic stem cell-based biomarker assay for developmental toxicity screening
A metabolic biomarker-based in vitro assay utilizing human embryonic stem (hES) cells was developed to identify the concentration of test compounds that perturbs cellular metabolism in a manner indicative of teratogenicity. This assay is designed to aid the early discovery-phase detection of potential human developmental toxicants. In this study,metabolomic data from hES cell culture media were used to assess potential biomarkers for development of a rapid in vitro teratogenicity assay. hES cells were treated with pharmaceuticals of known human teratogenicity at a concentration equivalent to their published human peak therapeutic plasma concentration. Two metabolite biomarkers (ornithine and cystine) were identified as indicators of developmental toxicity. A targeted exposure-based biomarker assay using these metabolites,along with a cytotoxicity endpoint,was then developed using a 9-point dose–response curve. The predictivity of the new assay was evaluated using a separate set of test compounds. To illustrate how the assay could be applied to compounds of unknown potential for developmental toxicity,an additional 10 compounds were evaluated that do not have data on human exposure during pregnancy,but have shown positive results in animal developmental toxicity studies. The new assay identified the potential developmental toxicants in the test set with 77% accuracy (57% sensitivity,100% specificity). The assay had a high concordance (≥75%) with existing in vivo models,demonstrating that the new assay can predict the developmental toxicity potential of new compounds as part of discovery phase testing and provide a signal as to the likely outcome of required in vivo tests.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Moore JC et al. (MAR 2010)
Stem Cell Research 4 2 92--106
A high-resolution molecular-based panel of assays for identification and characterization of human embryonic stem cell lines
Meticulous characterization of human embryonic stem cells (hESC) is critical to their eventual use in cell-based therapies,particularly in view of the diverse methods for derivation and maintenance of these cell lines. However,characterization methods are generally not standardized and many currently used assays are subjective,making dependable and direct comparison of cell lines difficult. In order to address this problem,we selected 10 molecular-based high-resolution assays as components of a panel for characterization of hESC. The selection of the assays was primarily based on their quantitative or objective (rather than subjective) nature. We demonstrate the efficacy of this panel by characterizing 4 hESC lines,derived in two different laboratories using different derivation techniques,as pathogen free,genetically stable,and able to differentiate into derivatives of all three germ layers. Our panel expands and refines a characterization panel previously proposed by the International Stem Cell Initiative and is another step toward standardized hESC characterization and quality control,a crucial element of successful hESC research and clinical translation.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Sandströ et al. (FEB 2017)
Toxicology in vitro : an international journal published in association with BIBRA 38 124--135
Development and characterization of a human embryonic stem cell-derived 3D neural tissue model for neurotoxicity testing.
Alternative models for more rapid compound safety testing are of increasing demand. With emerging techniques using human pluripotent stem cells,the possibility of generating human in vitro models has gained interest,as factors related to species differences could be potentially eliminated. When studying potential neurotoxic effects of a compound it is of crucial importance to have both neurons and glial cells. We have successfully developed a protocol for generating in vitro 3D human neural tissues,using neural progenitor cells derived from human embryonic stem cells. These 3D neural tissues can be maintained for two months and undergo progressive differentiation. We showed a gradual decreased expression of early neural lineage markers,paralleled by an increase in markers specific for mature neurons,astrocytes and oligodendrocytes. At the end of the two-month culture period the neural tissues not only displayed synapses and immature myelin sheaths around axons,but electrophysiological measurements also showed spontaneous activity. Neurotoxicity testing - comparing non-neurotoxic to known neurotoxic model compounds - showed an expected increase in the marker of astroglial reactivity after exposure to known neurotoxicants methylmercury and trimethyltin. Although further characterization and refinement of the model is required,these results indicate its potential usefulness for in vitro neurotoxicity testing.
View Publication
产品类型:
产品号#:
产品名:
文献
Xia Y et al. (OCT 2016)
Journal of hepatology
Human stem cell-derived hepatocytes as a model for hepatitis B virus infection, spreading and virus-host interactions.
BACKGROUND & AIMS One major obstacle of hepatitis B virus (HBV) research is the lack of efficient cell culture system permissive for viral infection and replication. The aim of our study was to establish a robust HBV infection model by using hepatocyte-like cells (HLCs) derived from human pluripotent stem cells. METHODS HLCs were differentiated from human embryonic stem cells and induced pluripotent stem cells. Maturation of hepatocyte functions was determined. After HBV infection,total viral DNA,cccDNA,total viral RNA,pgRNA,HBeAg and HBsAg were measured. RESULTS More than 90% of the HLCs expressed strong signals of human hepatocyte markers,like albumin,as well as known host factors required for HBV infection,suggesting that these cells possessed key features of mature hepatocytes. Notably,HLCs expressed the viral receptor sodium-taurocholate cotransporting polypeptide more stably than primary human hepatocytes (PHHs). HLCs supported robust infection and some spreading of HBV. Finally,by using this model,we identified two host-targeting agents,genistin and PA452,as novel antivirals. CONCLUSIONS Stem cell-derived HLCs fully support HBV infection. This novel HLC HBV infection model offers a unique opportunity to advance our understanding of the molecular details of the HBV life cycle; to further characterize virus-host interactions and to define new targets for HBV curative treatment. LAY SUMMARY Our study used human pluripotent stem cells to develop hepatocyte-like cells (HLCs) capable of expressing hepatocyte markers and host factors important for HBV infection. These cells fully support HBV infection and virus-host interactions,allowing for the identification of two novel antiviral agents. Thus,stem cell-derived HLCs provide a highly physiologically relevant system to advance our understanding of viral life cycle and provide a new tool for antiviral drug screening and development.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Ohlemacher SK et al. (MAR 2016)
Stem Cells 34 6 1553--1562
Stepwise Differentiation of Retinal Ganglion Cells from Human Pluripotent Stem Cells Enables Analysis of Glaucomatous Neurodegeneration
Human pluripotent stem cells (hPSCs),including both embryonic and induced pluripotent stem cells,possess the unique ability to readily differentiate into any cell type of the body,including cells of the retina. Although previous studies have demonstrated the ability to differentiate hPSCs to a retinal lineage,the ability to derive retinal ganglion cells (RGCs) from hPSCs has been complicated by the lack of specific markers with which to identify these cells from a pluripotent source. In the current study,the definitive identification of hPSC-derived RGCs was accomplished by their directed,stepwise differentiation through an enriched retinal progenitor intermediary,with resultant RGCs expressing a full complement of associated features and proper functional characteristics. These results served as the basis for the establishment of induced pluripotent stem cells (iPSCs) from a patient with a genetically inherited form of glaucoma,which results in damage and loss of RGCs. Patient-derived RGCs specifically exhibited a dramatic increase in apoptosis,similar to the targeted loss of RGCs in glaucoma,which was significantly rescued by the addition of candidate neuroprotective factors. Thus,the current study serves to establish a method by which to definitively acquire and identify RGCs from hPSCs and demonstrates the ability of hPSCs to serve as an effective in vitro model of disease progression. Moreover,iPSC-derived RGCs can be utilized for future drug screening approaches to identify targets for the treatment of glaucoma and other optic neuropathies. Stem Cells 2016.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Lu H-EE et al. (AUG 2011)
Experimental cell research 317 13 1895--1903
Selection of alkaline phosphatase-positive induced pluripotent stem cells from human amniotic fluid-derived cells by feeder-free system
Generation of induced pluripotent stem (iPS) cells from somatic cells has been successfully achieved by ectopic expression of four transcription factors,Oct4,Sox2,Klf4 and c-Myc,also known as the Yamanaka factors. In practice,initial iPS colonies are picked based on their embryonic stem (ES) cell-like morphology,but often may go on to fail subsequent assays,such as the alkaline phosphate (AP) assay. In this study,we co-expressed through lenti-viral delivery the Yamanaka factors in amniotic fluid-derived (AF) cells. ES-like colonies were picked onto a traditional feeder layer and a high percentage AF-iPS with partial to no AP activity was found. Interestingly,we obtained an overwhelming majority of fully stained AP positive (AP+) AF-iPS colonies when colonies were first seeded on a feeder-free culture system,and then transferred to a feeder layer for expansion. Furthermore,colonies with no AP activity were not detected. This screening step decreased the variation seen between morphology and AP assay. We observed the AF-iPS colonies grown on the feeder layer with 28% AP+ colonies,45% AP partially positive (AP+/-) colonies and 27% AP negative (AP-) colonies,while colonies screened by the feeder-free system were 84% AP+ colonies,16% AP+/- colonies and no AP- colonies. The feeder-free screened AP+ AF-iPS colonies were also positive for pluripotent markers,OCT4,SOX2,NANOG,TRA-1-60,TRA-1-81,SSEA-3 and SSEA-4 as well as having differentiation abilities into three germ layers in vitro and in vivo. In this study,we report a simplistic,one-step method for selection of AP+ AF-iPS cells via feeder-free screening.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Ji J et al. (MAR 2012)
Stem cells (Dayton,Ohio) 30 3 435--40
Elevated coding mutation rate during the reprogramming of human somatic cells into induced pluripotent stem cells.
Mutations in human induced pluripotent stem cells (iPSCs) pose a risk for their clinical use due to preferential reprogramming of mutated founder cell and selection of mutations during maintenance of iPSCs in cell culture. It is unknown,however,if mutations in iPSCs are due to stress associated with oncogene expression during reprogramming. We performed whole exome sequencing of human foreskin fibroblasts and their derived iPSCs at two different passages. We found that in vitro passaging contributed 7% to the iPSC coding point mutation load,and ultradeep amplicon sequencing revealed that 19% of the mutations preexist as rare mutations in the parental fibroblasts suggesting that the remaining 74% of the mutations were acquired during cellular reprogramming. Simulation suggests that the mutation intensity during reprogramming is ninefold higher than the background mutation rate in culture. Thus the factor induced reprogramming stress contributes to a significant proportion of the mutation load of iPSCs.
View Publication
Rapid and Efficient Direct Conversion of Human Adult Somatic Cells into Neural Stem Cells by HMGA2/let-7b.
A recent study has suggested that fibroblasts can be converted into mouse-induced neural stem cells (miNSCs) through the expression of defined factors. However,successful generation of human iNSCs (hiNSCs) has proven challenging to achieve. Here,using microRNA (miRNA) expression profile analyses,we showed that let-7 microRNA has critical roles for the formation of PAX6/NESTIN-positive colonies from human adult fibroblasts and the proliferation and self-renewal of hiNSCs. HMGA2,a let-7-targeting gene,enables induction of hiNSCs that displayed morphological/molecular features and in vitro/in vivo differentiation potential similar to H9-derived NSCs. Interestingly,HMGA2 facilitated the efficient conversion of senescent somatic cells or blood CD34+ cells into hiNSCs through an interaction with SOX2,whereas other combinations or SOX2 alone showed a limited conversion ability. Taken together,these findings suggest that HMGA2/let-7 facilitates direct reprogramming toward hiNSCs in minimal conditions and maintains hiNSC self-renewal,providing a strategy for the clinical treatment of neurological diseases.
View Publication
产品类型:
产品号#:
05750
05752
产品名:
NeuroCult™ NS-A 基础培养基(人)
NeuroCult™ NS-A 分化试剂盒(人)
文献
Battula VL et al. (APR 2007)
Differentiation; research in biological diversity 75 4 279--91
Human placenta and bone marrow derived MSC cultured in serum-free, b-FGF-containing medium express cell surface frizzled-9 and SSEA-4 and give rise to multilineage differentiation.
Conventionally,mesenchymal stem cells (MSC) are generated by plating cells from bone marrow (BM) or other sources into culture flasks and selecting plastic-adherent cells with fibroblastoid morphology. These cells express CD9,CD10,CD13,CD73,CD105,CD166,and other markers but show only a weak or no expression of the embryonic markers stage-specific embryonic antigen-4 (SSEA-4),Oct-4 and nanog-3. Using a novel protocol we prepared MSC from BM and non-amniotic placenta (PL) by culture of Ficoll-selected cells in gelatin-coated flasks in the presence of a serum-free,basic fibroblast growth factor (b-FGF)-containing medium that was originally designed for the expansion of human embryonic stem cells (ESC). MSC generated in gelatin-coated flasks in the presence of ESC medium revealed a four-to fivefold higher proliferation rate than conventionally prepared MSC which were grown in uncoated flasks in serum-containing medium. In contrast,the colony forming unit fibroblast number was only 1.5- to twofold increased in PL-MSC and not affected in BM-MSC. PL-MSC grown in ESC medium showed an increased surface expression of SSEA-4 and frizzled-9 (FZD-9),an increased Oct-4 and nestin mRNA expression,and an induced expression of nanog-3. BM-MSC showed an induced expression of FZD-9,nanog-3,and Oct-4. In contrast to PL-MSC,only BM-MSC expressed the MSC-specific W8B2 antigen. When cultured under appropriate conditions,these MSC gave rise to functional adipocytes and osteoblast-like cells (mesoderm),glucagon and insulin expressing pancreatic-like cells (endoderm),as well as cells expressing the neuronal markers neuron-specific enolase,glutamic acid decarboxylase-67 (GAD),or class III beta-tubulin,and the astrocyte marker glial fibrillary acidic protein (ectoderm). In conclusion,using a novel protocol we demonstrate that adult BM-and neonatal PL-derived MSC can be induced to express high levels of FZD-9,Oct-4,nanog-3,and nestin and are able of multi-lineage differentiation.
View Publication