H. Cao et al. (JUN 2018)
Human gene therapy 29 6 643--652
Transducing Airway Basal Cells with a Helper-Dependent Adenoviral Vector for Lung Gene Therapy.
A major challenge in developing gene-based therapies for airway diseases such as cystic fibrosis (CF) is sustaining therapeutic levels of transgene expression over time. This is largely due to airway epithelial cell turnover and the host immunogenicity to gene delivery vectors. Modern gene editing tools and delivery vehicles hold great potential for overcoming this challenge. There is currently not much known about how to deliver genes into airway stem cells,of which basal cells are the major type in human airways. In this study,helper-dependent adenoviral (HD-Ad) vectors were delivered to mouse and pig airways via intranasal delivery,and direct bronchoscopic instillation,respectively. Vector transduction was assessed by immunostaining of lung tissue sections,which revealed that airway basal cells of mice and pigs can be targeted in vivo. In addition,efficient transduction of primary human airway basal cells was verified with an HD-Ad vector expressing green fluorescent protein. Furthermore,we successfully delivered the human CFTR gene to airway basal cells from CF patients,and demonstrated restoration of CFTR channel activity following cell differentiation in air-liquid interface culture. Our results provide a strong rationale for utilizing HD-Ad vectors to target airway basal cells for permanent gene correction of genetic airway diseases.
View Publication
产品类型:
产品号#:
05001
05021
05022
产品名:
PneumaCult™-ALI 培养基
PneumaCult™-ALI 培养基含12 mm Transwell®插件
PneumaCult™-ALI 培养基含6.5 mm Transwell®插件
文献
Kim J-HHH et al. (MAR 2016)
ACS nano 10 3 3342--3355
Nanotopography Promotes Pancreatic Differentiation of Human Embryonic Stem Cells and Induced Pluripotent Stem Cells.
Although previous studies suggest that nanotopographical features influence properties and behaviors of stem cells,only a few studies have attempted to derive clinically useful somatic cells from human pluripotent stem cells using nanopatterned surfaces. In the present study,we report that polystyrene nanopore-patterned surfaces significantly promote the pancreatic differentiation of human embryonic and induced pluripotent stem cells. We compared different diameters of nanopores and showed that 200 nm nanopore-patterned surfaces highly upregulated the expression of PDX1,a critical transcription factor for pancreatic development,leading to an approximately 3-fold increase in the percentage of differentiating PDX1(+) pancreatic progenitors compared with control flat surfaces. Furthermore,in the presence of biochemical factors,200 nm nanopore-patterned surfaces profoundly enhanced the derivation of pancreatic endocrine cells producing insulin,glucagon,or somatostatin. We also demonstrate that nanopore-patterned surface-induced upregulation of PDX1 is associated with downregulation of TAZ,suggesting the potential role of TAZ in nanopore-patterned surface-mediated mechanotransduction. Our study suggests that appropriate cytokine treatments combined with nanotopographical stimulation could be a powerful tool for deriving a high purity of desired cells from human pluripotent stem cells.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Duelen R et al. ( 2017)
Stem cells international 2017 4651238
Activin A Modulates CRIPTO-1/HNF4α(+) Cells to Guide Cardiac Differentiation from Human Embryonic Stem Cells.
The use of human pluripotent stem cells in basic and translational cardiac research requires efficient differentiation protocols towards cardiomyocytes. In vitro differentiation yields heterogeneous populations of ventricular-,atrial-,and nodal-like cells hindering their potential applications in regenerative therapies. We described the effect of the growth factor Activin A during early human embryonic stem cell fate determination in cardiac differentiation. Addition of high levels of Activin A during embryoid body cardiac differentiation augmented the generation of endoderm derivatives,which in turn promoted cardiomyocyte differentiation. Moreover,a dose-dependent increase in the coreceptor expression of the TGF-β superfamily member CRIPTO-1 was observed in response to Activin A. We hypothesized that interactions between cells derived from meso- and endodermal lineages in embryoid bodies contributed to improved cell maturation in early stages of cardiac differentiation,improving the beating frequency and the percentage of contracting embryoid bodies. Activin A did not seem to affect the properties of cardiomyocytes at later stages of differentiation,measuring action potentials,and intracellular Ca(2+) dynamics. These findings are relevant for improving our understanding on human heart development,and the proposed protocol could be further explored to obtain cardiomyocytes with functional phenotypes,similar to those observed in adult cardiac myocytes.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Peng Y et al. (NOV 2012)
Journal of Tissue Engineering and Regenerative Medicine 6 10 e74----86
Human fibroblast matrices bio-assembled under macromolecular crowding support stable propagation of human embryonic stem cells.
Stable pluripotent feeder-free propagation of human embryonic stem cells (hESCs) prior to their therapeutic applications remains a major challenge. Matrigel™ (BD Singapore) is a murine sarcoma-derived extracellular matrix (ECM) widely used as a cell-free support combined with conditioned or chemically defined media; however,inherent xenogenic and immunological threats invalidate it for clinical applications. Using human fibrogenic cells to generate ECM is promising but currently suffers from inefficient and time-consuming deposition in vitro. We recently showed that macromolecular crowding (MMC) accelerated ECM deposition substantially in vitro. In the current study,we used dextran sulfate 500 kDa as a macromolecular crowder to induce WI-38 fetal human lung fibroblasts at 0.5% serum condition to deposit human ECM in three days. After decellularization,the generated ECMs allowed stable propagation of H9 hESCs over 20 passages in chemically-defined medium (mTEsR1) with an overall improved outcome compared to Matrigel in terms of population doubling while retaining teratoma formation and differentiation capacity. Of significance,only ECMs generated by MMC allowed the successful propagation of hESCs. ECMs were highly complex and in contrast to Matrigel,contained no vitronectin but did contain collagen XII,ig-h3 and novel for hESC-supporting human matrices,substantial amounts of transglutaminase 2. Genome-wide analysis of promoter DNA methylation states revealed high overall similarity between human ECM- and Matrigel-cultured hESCs; however,distinct differences were observed with 49 genes associated with a variety of cellular functions. Thus,human ECMs deposited by MMC by selected fibroblast lines are a suitable human microenvironment for stable hESC propagation and clinically translational settings.
View Publication
产品类型:
产品号#:
07923
85850
85857
产品名:
Dispase (1 U/mL)
mTeSR™1
mTeSR™1
文献
Sakaki-Yumoto M et al. (JUN 2013)
Journal of Biological Chemistry 288 25 18546--18560
Smad2 Is essential for maintenance of the human and mouse primed pluripotent stem cell state
Human embryonic stem cells and mouse epiblast stem cells represent a primed pluripotent stem cell state that requires TGF-β/activin signaling. TGF-β and/or activin are commonly thought to regulate transcription through both Smad2 and Smad3. However,the different contributions of these two Smads to primed pluripotency and the downstream events that they may regulate remain poorly understood. We addressed the individual roles of Smad2 and Smad3 in the maintenance of primed pluripotency. We found that Smad2,but not Smad3,is required to maintain the undifferentiated pluripotent state. We defined a Smad2 regulatory circuit in human embryonic stem cells and mouse epiblast stem cells,in which Smad2 acts through binding to regulatory promoter sequences to activate Nanog expression while in parallel repressing autocrine bone morphogenetic protein signaling. Increased autocrine bone morphogenetic protein signaling caused by Smad2 down-regulation leads to cell differentiation toward the trophectoderm,mesoderm,and germ cell lineages. Additionally,induction of Cdx2 expression,as a result of decreased Smad2 expression,leads to repression of Oct4 expression,which,together with the decreased Nanog expression,accelerates the loss of pluripotency. These findings reveal that Smad2 is a unique integrator of transcription and signaling events and is essential for the maintenance of the mouse and human primed pluripotent stem cell state.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Park I-K et al. (MAR 2009)
Blood 113 11 2470--7
The Axl/Gas6 pathway is required for optimal cytokine signaling during human natural killer cell development.
Interleukin-15 (IL-15) is essential for natural killer (NK) cell differentiation. In this study,we assessed whether the receptor tyrosine kinase Axl and its ligand,Gas6,are involved in IL-15-mediated human NK differentiation from CD34(+) hematopoietic progenitor cells (HPCs). Blocking the Axl-Gas6 interaction with a soluble Axl fusion protein (Axl-Fc) or the vitamin K inhibitor warfarin significantly diminished the absolute number and percentage of CD3(-)CD56(+) NK cells derived from human CD34(+) HPCs cultured in the presence of IL-15,probably resulting in part from reduced phosphorylation of STAT5. In addition,CD3(-)CD56(+) NK cells derived from culture of CD34(+) HPCs with IL-15 and Axl-Fc had a significantly diminished capacity to express interferon-gamma or its master regulator,T-BET. Culture of CD34(+) HPCs in the presence of c-Kit ligand and Axl-Fc resulted in a significant decrease in the frequency of NK precursor cells responding to IL-15,probably the result of reduced c-Kit phosphorylation. Collectively,our data suggest that the Axl/Gas6 pathway contributes to normal human NK-cell development,at least in part via its regulatory effects on both the IL-15 and c-Kit signaling pathways in CD34(+) HPCs,and to functional NK-cell maturation via an effect on the master regulatory transcription factor T-BET.
View Publication
产品类型:
产品号#:
15026
15066
产品名:
RosetteSep™人造血祖细胞富集抗体混合物
RosetteSep™人造血祖细胞富集抗体混合物
文献
Gilbert AE et al. (JAN 2011)
PloS one 6 4 e19330
Monitoring the systemic human memory B cell compartment of melanoma patients for anti-tumor IgG antibodies.
Melanoma,a potentially lethal skin cancer,is widely thought to be immunogenic in nature. While there has been much focus on T cell-mediated immune responses,limited knowledge exists on the role of mature B cells. We describe an approach,including a cell-based ELISA,to evaluate mature IgG antibody responses to melanoma from human peripheral blood B cells. We observed a significant increase in antibody responses from melanoma patients (n = 10) to primary and metastatic melanoma cells compared to healthy volunteers (n = 10) (Ptextless0.0001). Interestingly,we detected a significant reduction in antibody responses to melanoma with advancing disease stage in our patient cohort (n = 21) (Ptextless0.0001). Overall,28% of melanoma patient-derived B cell cultures (n = 1,800) compared to 2% of cultures from healthy controls (n = 600) produced antibodies that recognized melanoma cells. Lastly,a patient-derived melanoma-specific monoclonal antibody was selected for further study. This antibody effectively killed melanoma cells in vitro via antibody-mediated cellular cytotoxicity. These data demonstrate the presence of a mature systemic B cell response in melanoma patients,which is reduced with disease progression,adding to previous reports of tumor-reactive antibodies in patient sera,and suggesting the merit of future work to elucidate the clinical relevance of activating humoral immune responses to cancer.
View Publication
产品类型:
产品号#:
15024
15064
产品名:
RosetteSep™人B细胞富集抗体混合物
RosetteSep™人B细胞富集抗体混合物
文献
Lu HF et al. (MAR 2012)
Biomaterials 33 8 2419--30
A 3D microfibrous scaffold for long-term human pluripotent stem cell self-renewal under chemically defined conditions.
Realizing the potential of human pluripotent stem cell (hPSC)-based therapy requires the development of defined scalable culture systems with efficient expansion,differentiation and isolation protocols. We report an engineered 3D microfiber system that efficiently supports long-term hPSCs self-renewal under chemically defined conditions. The unique feature of this system lies in the application of a 3D ECM-like environment in which cells are embedded,that affords: (i) uniform high cell loading density in individual cell-laden constructs (∼10 7 cells/ml); (ii) quick recovery of encapsulated cells (textless10min at 37°C) with excellent preservation of cell viability and 3D multicellular structure; (iii) direct cryopreservation of the encapsulated cells in situ in the microfibers with textgreater17-fold higher cell viability compared to those cultured on Matrigel surface; (iv) long-term hPSC propagation under chemically defined conditions. Four hPSC lines propagated in the microfibrous scaffold for 10 consecutive passages were capable of maintaining an undifferentiated phenotype as demonstrated by the expression of stem cell markers and stable karyotype invitro and the ability to form derivatives of the three germ layers both invitro and invivo. Our 3D microfibrous system has the potential for large-scale cultivation of transplantable hESCs and derivatives for clinical applications. textcopyright 2011 Elsevier Ltd.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Tiburcy M et al. (MAY 2017)
Circulation 135 19 1832--1847
Defined Engineered Human Myocardium With Advanced Maturation for Applications in Heart Failure Modeling and Repair.
BACKGROUND Advancing structural and functional maturation of stem cell-derived cardiomyocytes remains a key challenge for applications in disease modeling,drug screening,and heart repair. Here,we sought to advance cardiomyocyte maturation in engineered human myocardium (EHM) toward an adult phenotype under defined conditions. METHODS We systematically investigated cell composition,matrix,and media conditions to generate EHM from embryonic and induced pluripotent stem cell-derived cardiomyocytes and fibroblasts with organotypic functionality under serum-free conditions. We used morphological,functional,and transcriptome analyses to benchmark maturation of EHM. RESULTS EHM demonstrated important structural and functional properties of postnatal myocardium,including: (1) rod-shaped cardiomyocytes with M bands assembled as a functional syncytium; (2) systolic twitch forces at a similar level as observed in bona fide postnatal myocardium; (3) a positive force-frequency response; (4) inotropic responses to β-adrenergic stimulation mediated via canonical β1- and β2-adrenoceptor signaling pathways; and (5) evidence for advanced molecular maturation by transcriptome profiling. EHM responded to chronic catecholamine toxicity with contractile dysfunction,cardiomyocyte hypertrophy,cardiomyocyte death,and N-terminal pro B-type natriuretic peptide release; all are classical hallmarks of heart failure. In addition,we demonstrate the scalability of EHM according to anticipated clinical demands for cardiac repair. CONCLUSIONS We provide proof-of-concept for a universally applicable technology for the engineering of macroscale human myocardium for disease modeling and heart repair from embryonic and induced pluripotent stem cell-derived cardiomyocytes under defined,serum-free conditions.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Kokudo T et al. (OCT 2008)
Journal of cell science 121 20 3317--24
Snail is required for TGFbeta-induced endothelial-mesenchymal transition of embryonic stem cell-derived endothelial cells.
Epithelial-mesenchymal transition (EMT) plays important roles in various physiological and pathological processes,and is regulated by signaling pathways mediated by cytokines,including transforming growth factor beta (TGFbeta). Embryonic endothelial cells also undergo differentiation into mesenchymal cells during heart valve formation and aortic maturation. However,the molecular mechanisms that regulate such endothelial-mesenchymal transition (EndMT) remain to be elucidated. Here we show that TGFbeta plays important roles during mural differentiation of mouse embryonic stem cell-derived endothelial cells (MESECs). TGFbeta2 induced the differentiation of MESECs into mural cells,with a decrease in the expression of the endothelial marker claudin 5,and an increase in expression of the mural markers smooth muscle alpha-actin,SM22alpha and calponin,whereas a TGFbeta type I receptor kinase inhibitor inhibited EndMT. Among the transcription factors involved in EMT,Snail was induced by TGFbeta2 in MESECs. Tetracycline-regulated expression of Snail induced the differentiation of MESECs into mural cells,whereas knockdown of Snail expression abrogated TGFbeta2-induced mural differentiation of MESECs. These results indicate that Snail mediates the actions of endogenous TGFbeta signals that induce EndMT.
View Publication
产品类型:
产品号#:
72592
产品名:
LY364947
文献
Sato H et al. ( 2016)
Scientific reports 6 31063
Microfabric Vessels for Embryoid Body Formation and Rapid Differentiation of Pluripotent Stem Cells.
Various scalable three-dimensional culture systems for regenerative medicine using human induced pluripotent stem cells (hiPSCs) have been developed to date. However,stable production of hiPSCs with homogeneous qualities still remains a challenge. Here,we describe a novel and simple embryoid body (EB) formation system using unique microfabricated culture vessels. Furthermore,this culture system is useful for high throughput EB formation and rapid generation of differentiated cells such as neural stem cells (NSCs) from hiPSCs. The period of NSC differentiation was significantly shortened under high EB density culture conditions. Simultaneous mass production of a pure population of NSCs was possible within 4 days. These results indicate that the novel culture system might not only become a unique tool to obtain new insights into developmental biology based on human stem cells,but also provide an important tractable platform for efficient and stable production of NSCs for clinical applications.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
J. E. Adair et al. ( 2016)
Nature communications 7 13173
Semi-automated closed system manufacturing of lentivirus gene-modified haematopoietic stem cells for gene therapy.
Haematopoietic stem cell (HSC) gene therapy has demonstrated potential to treat many diseases. However,current state of the art requires sophisticated ex vivo gene transfer in a dedicated Good Manufacturing Practices facility,limiting availability. An automated process would improve the availability and standardized manufacture of HSC gene therapy. Here,we develop a novel program for semi-automated cell isolation and culture equipment to permit complete benchtop generation of gene-modified CD34+ blood cell products for transplantation. These cell products meet current manufacturing quality standards for both mobilized leukapheresis and bone marrow,and reconstitute human haematopoiesis in immunocompromised mice. Importantly,nonhuman primate autologous gene-modified CD34+ cell products are capable of stable,polyclonal multilineage reconstitution with follow-up of more than 1 year. These data demonstrate proof of concept for point-of-care delivery of HSC gene therapy. Given the many target diseases for gene therapy,there is enormous potential for this approach to treat patients on a global scale.
View Publication