Quantitative comparison of constitutive promoters in human ES cells.
BACKGROUND: Constitutive promoters that ensure sustained and high level gene expression are basic research tools that have a wide range of applications,including studies of human embryology and drug discovery in human embryonic stem cells (hESCs). Numerous cellular/viral promoters that ensure sustained gene expression in various cell types have been identified but systematic comparison of their activities in hESCs is still lacking. METHODOLOGY/PRINCIPAL FINDINGS: We have quantitatively compared promoter activities of five commonly used constitutive promoters,including the human β-actin promoter (ACTB),cytomegalovirus (CMV),elongation factor-1α,(EF1α),phosphoglycerate kinase (PGK) and ubiquitinC (UbC) in hESCs. Lentiviral gene transfer was used to ensure stable integration of promoter-eGFP constructs into the hESCs genome. Promoter activities were quantitatively compared in long term culture of undifferentiated hESCs and in their differentiated progenies. CONCLUSION/SIGNIFICANCE: The ACTB,EF1α and PGK promoters showed stable activities during long term culture of undifferentiated hESCs. The ACTB promoter was superior by maintaining expression in 75-80% of the cells after 50 days in culture. During embryoid body (EB) differentiation,promoter activities of all five promoters decreased. Although the EF1α promoter was downregulated in approximately 50% of the cells,it was the most stable promoter during differentiation. Gene expression analysis of differentiated eGFP+ and eGFP- cells indicate that promoter activities might be restricted to specific cell lineages,suggesting the need to carefully select optimal promoters for constitutive gene expression in differentiated hESCs.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
文献
Rasheed Z et al. (JAN 2010)
Journal of visualized experiments : JoVE 43
Isolation of stem cells from human pancreatic cancer xenografts.
Cancer stem cells (CSCs) have been identified in a growing number of malignancies and are functionally defined by their ability to undergo self-renewal and produce differentiated progeny. These properties allow CSCs to recapitulate the original tumor when injected into immunocompromised mice. CSCs within an epithelial malignancy were first described in breast cancer and found to display specific cell surface antigen expression (CD44+CD24(low/�?�)). Since then,CSCs have been identified in an increasing number of other human malignancies using CD44 and CD24 as well as a number of other surface antigens. Physiologic properties,including aldehyde dehydrogenase (ALDH) activity,have also been used to isolate CSCs from malignant tissues. Recently,we and others identified CSCs from pancreatic adenocarcinoma based on ALDH activity and the expression of the cell surface antigens CD44 and CD24,and CD133. These highly tumorigenic populations may or may not be overlapping and display other functions. We found that ALDH+ and CD44+CD24+ pancreatic CSCs are similarly tumorigenic,but ALDH+ cells are relatively more invasive. In this protocol we describe a method to isolate viable pancreatic CSCs from low-passage human xenografts. Xenografted tumors are harvested from mice and made into a single-cell suspension. Tissue debris and dead cells are separated from live cells and then stained using antibodies against CD44 and CD24 and using the ALDEFLUOR reagent,a fluorescent substrate of ALDH. CSCs are then isolated by fluorescence activated cell sorting. Isolated CSCs can then be used for analytical or functional assays requiring viable cells.
View Publication
产品类型:
产品号#:
01700
01705
产品名:
ALDEFLUOR™工具
ALDEFLUOR™DEAB试剂
文献
Huang X et al. (DEC 2016)
Advanced materials (Deerfield Beach,Fla.) 28 48 10732--10737
Light-Patterned RNA Interference of 3D-Cultured Human Embryonic Stem Cells.
A new method of spatially controlled gene regulation in 3D-cultured human embryonic stem cells is developed using hollow gold nanoshells (HGNs) and near-infrared (NIR) light. Targeted cell(s) are discriminated from neighboring cell(s) by focusing NIR light emitted from a two-photon microscope. Irradiation of cells that have internalized HGNs releases surface attached siRNAs and leads to concomitant gene downregulation.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Butts JC et al. (APR 2017)
Proceedings of the National Academy of Sciences of the United States of America
Differentiation of V2a interneurons from human pluripotent stem cells.
The spinal cord consists of multiple neuronal cell types that are critical to motor control and arise from distinct progenitor domains in the developing neural tube. Excitatory V2a interneurons in particular are an integral component of central pattern generators that control respiration and locomotion; however,the lack of a robust source of human V2a interneurons limits the ability to molecularly profile these cells and examine their therapeutic potential to treat spinal cord injury (SCI). Here,we report the directed differentiation of CHX10(+) V2a interneurons from human pluripotent stem cells (hPSCs). Signaling pathways (retinoic acid,sonic hedgehog,and Notch) that pattern the neural tube were sequentially perturbed to identify an optimized combination of small molecules that yielded ∼25% CHX10(+) cells in four hPSC lines. Differentiated cultures expressed much higher levels of V2a phenotypic markers (CHX10 and SOX14) than other neural lineage markers. Over time,CHX10(+) cells expressed neuronal markers [neurofilament,NeuN,and vesicular glutamate transporter 2 (VGlut2)],and cultures exhibited increased action potential frequency. Single-cell RNAseq analysis confirmed CHX10(+) cells within the differentiated population,which consisted primarily of neurons with some glial and neural progenitor cells. At 2 wk after transplantation into the spinal cord of mice,hPSC-derived V2a cultures survived at the site of injection,coexpressed NeuN and VGlut2,extended neurites textgreater5 mm,and formed putative synapses with host neurons. These results provide a description of V2a interneurons differentiated from hPSCs that may be used to model central nervous system development and serve as a potential cell therapy for SCI.
View Publication
Singbrant S et al. (JUN 2010)
Blood 115 23 4689--98
Canonical BMP signaling is dispensable for hematopoietic stem cell function in both adult and fetal liver hematopoiesis, but essential to preserve colon architecture.
Numerous publications have described the importance of bone morphogenetic protein (BMP) signaling in the specification of hematopoietic tissue in developing embryos. Here we investigate the full role of canonical BMP signaling in both adult and fetal liver hematopoiesis using conditional knockout strategies because conventional disruption of components of the BMP signaling pathway result in early death of the embryo. By targeting both Smad1 and Smad5,we have generated a double-knockout mouse with complete disruption of canonical BMP signaling. Interestingly,concurrent deletion of Smad1 and Smad5 results in death because of extrahematopoietic pathologic changes in the colon. However,Smad1/Smad5-deficient bone marrow cells can compete normally with wild-type cells and display unaffected self-renewal and differentiation capacity when transplanted into lethally irradiated recipients. Moreover,although BMP receptor expression is increased in fetal liver,fetal liver cells deficient in both Smad1 and Smad5 remain competent to long-term reconstitute lethally irradiated recipients in a multilineage manner. In conclusion,canonical BMP signaling is not required to maintain either adult or fetal liver hematopoiesis,despite its crucial role in the initial patterning of hematopoiesis in early embryonic development.
View Publication
产品类型:
产品号#:
03231
09600
09650
产品名:
MethoCult™M3231
StemSpan™ SFEM
StemSpan™ SFEM
文献
Nicolini FE et al. (AUG 2002)
Blood 100 4 1257--64
Expression of a human beta-globin transgene in erythroid cells derived from retrovirally transduced transplantable human fetal liver and cord blood cells.
Transfer of therapeutic genes to human hematopoietic stem cells (HSCs) using complex vectors at clinically relevant efficiencies remains a major challenge. Recently we described a stable retroviral vector that sustains long-term expression of green fluorescent protein (GFP) and a human beta-globin gene in the erythroid progeny of transduced murine HSCs. We now report the efficient transduction of primitive human CD34(+) fetal liver or cord blood cells with this vector and expression of the beta-globin transgene in the erythroid progeny of these human cells for at least 2 months. After growth factor prestimulation and then a 2- to 3-day exposure to the virus,35% to 55% GFP(+) progeny were seen in assays of transduced colony-forming cells,primitive erythroid precursors that generate large numbers of glycophorin A(+) cells in 3-week suspension cultures,and 6-week long-term culture-initiating cells. In immunodeficient mice injected with unselected infected cells,5% to 15% of the human cells regenerated in the marrow (including the erythroid cells) were GFP(+) 3 and 6 weeks after transplantation. Importantly,the numbers of GFP(+) human lymphoid and either granulopoietic or erythroid cells in individual mice 6 weeks after transplantation were significantly correlated,indicative of the initial transduction of human multipotent cells with in vivo repopulating activity. Expression of the transduced beta-globin gene in human cells obtained directly from the mice or after their differentiation into erythroid cells in vitro was demonstrated by reverse transcriptase-polymerase chain reaction using specific primers. These experiments represent a significant step toward the realization of a gene therapy approach for human beta-globin gene disorders.
View Publication
产品类型:
产品号#:
04330
产品名:
MethoCult™H4330
文献
Santoni de Sio FR et al. (JUN 2006)
Blood 107 11 4257--65
Proteasome activity restricts lentiviral gene transfer into hematopoietic stem cells and is down-regulated by cytokines that enhance transduction.
The therapeutic potential of hematopoietic stem cell (HSC) gene therapy can be fully exploited only by reaching efficient gene transfer into HSCs without compromising their biologic properties. Although HSCs can be transduced by HIV-derived lentiviral vectors (LVs) in short ex vivo culture,they display low permissivity to the vector,requiring cytokine stimulation to reach high-frequency transduction. Using stringent assays of competitive xenograft repopulation,we show that early-acting cytokines synergistically enhanced human HSC gene transfer by LVs without impairing engraftment and repopulation capacity. Using S-phase suicide assays,we show that transduction enhancement by cytokines was not dependent on cell cycle progression and that LVs can transduce quiescent HSCs. Pharmacologic inhibition of the proteasome during transduction dramatically enhanced HSC gene transfer,allowing the reach of very high levels of vector integration in their progeny in vivo. Thus,LVs are effectively restricted at a postentry step by the activity of this proteolytic complex. Unexpectedly,cytokine stimulation rapidly and substantially down-regulated proteasome activity in hematopoietic progenitors,highlighting one mechanism by which cytokines may enhance permissiveness to LV gene transfer. These findings demonstrate that antiviral responses ultimately mediated by proteasomes strongly limit the efficiency of HSC transduction by LVs and establish improved conditions for HSC-based gene therapy.
View Publication
产品类型:
产品号#:
09600
09650
产品名:
StemSpan™ SFEM
StemSpan™ SFEM
文献
Zhang J et al. (NOV 2011)
Stem Cell Reviews and Reports 7 4 987--996
Electrically Guiding Migration of Human Induced Pluripotent Stem Cells
A major road-block in stem cell therapy is the poor homing and integration of transplanted stem cells with the targeted host tissue. Human induced pluripotent stem (hiPS) cells are considered an excellent alternative to embryonic stem (ES) cells and we tested the feasibility of using small,physiological electric fields (EFs) to guide hiPS cells to their target. Applied EFs stimulated and guided migration of cultured hiPS cells toward the anode,with a stimulation threshold of textless30 mV/mm; in three-dimensional (3D) culture hiPS cells remained stationary,whereas in an applied EF they migrated directionally. This is of significance as the therapeutic use of hiPS cells occurs in a 3D environment. EF exposure did not alter expression of the pluripotency markers SSEA-4 and Oct-4 in hiPS cells. We compared EF-directed migration (galvanotaxis) of hiPS cells and hES cells and found that hiPS cells showed greater sensitivity and directedness than those of hES cells in an EF,while hES cells migrated toward cathode. Rho-kinase (ROCK) inhibition,a method to aid expansion and survival of stem cells,significantly increased the motility,but reduced directionality of iPS cells in an EF by 70-80%. Thus,our study has revealed that physiological EF is an effective guidance cue for the migration of hiPS cells in either 2D or 3D environments and that will occur in a ROCK-dependent manner. Our current finding may lead to techniques for applying EFs in vivo to guide migration of transplanted stem cells.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Lu Y et al. (FEB 2012)
Stem cells and development 21 3 394--403
Avian-Induced Pluripotent Stem Cells Derived Using Human Reprogramming Factors
Avian species are important model animals for developmental biology and disease research. However,unlike in mice,where clonal lines of pluripotent stem cells have enabled researchers to study mammalian gene function,clonal and highly proliferative pluripotent avian cell lines have been an elusive goal. Here we demonstrate the generation of avian induced pluripotent stem cells (iPSCs),the first nonmammalian iPSCs,which were clonally isolated and propagated,important attributes not attained in embryo-sourced avian cells. This was accomplished using human pluripotency genes rather than avian genes,indicating that the process in which mammalian and nonmammalian cells are reprogrammed is a conserved process. Quail iPSCs (qiPSCs) were capable of forming all 3 germ layers in vitro and were directly differentiated in culture into astrocytes,oligodendrocytes,and neurons. Ultimately,qiPSCs were capable of generating live chimeric birds and incorporated into tissues from all 3 germ layers,extraembryonic tissues,and potentially the germline. These chimera competent qiPSCs and in vitro differentiated cells offer insight into the conserved nature of reprogramming and genetic tools that were only previously available in mammals.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Krawetz R and Rancourt DE (JAN 2012)
Methods in molecular biology (Clifton,N.J.) 873 227--235
Suspension bioreactor expansion of undifferentiated human embryonic stem cells
Embryonic stem cells (ESCs) are unique cells,which have the ability to differentiate into all cell types that comprise the adult organism. Furthermore,ESCs can infinitely self-renew under optimized conditions. These features place human ESCs (hESCs) in a position where these cells can be exploited for tissue engineering and regenerative medicine approaches in treating human degenerative disorders. However,cell therapy approaches will require large amounts of clinically useable cells,not typically achievable using standard static cell culture methods. Here,we describe a method wherein clinically relevant numbers of hESCs can be generated in a cost and time effective manner.
View Publication
产品类型:
产品号#:
07920
85850
85857
产品名:
ACCUTASE™
mTeSR™1
mTeSR™1
文献
Park Y et al. (MAR 2014)
Journal of Biotechnology 174 1 39--48
Hepatic differentiation of human embryonic stem cells on microcarriers
Translation of stem cell research to industrial and clinical settings mostly requires large quantities of cells,especially those involving large organs such as the liver. A scalable reactor system is desirable to ensure a reliable supply of sufficient quantities of differentiated cells. To increase the culture efficiency in bioreactor system,high surface to volume ratio needs to be achieved. We employed a microcarrier culture system for the expansion of undifferentiated human embryonic stem cells (hESCs) as well as for directed differentiation of these cells to hepatocyte-like cells. Cells in single cell suspension were attached to the bead surface in even distribution and were expanded to 1??106cells/ml within 2 days of hESC culture with maintenance of the level of pluripotency markers. Directed differentiation into hepatocyte-like cells on microcarriers,both in static culture and stirred bioreactors,induced similar levels of hepatocyte-like cell differentiation as observed with cells cultured in conventional tissue culture plates. The cells expressed both immature and mature hepatocyte-lineage genes and proteins such as asialoglycoprotein receptor-1 (ASGPR-1) and albumin. Differentiated cells exhibited functional characteristics such as secretion of albumin and urea,and CYP3A4 activity could be detected. Microcarriers thus offer the potential for large-scale expansion and differentiation of hESCs induced hepatocyte-like cells in a more controllable bioreactor environment. ?? 2014.
View Publication