A DEAB-sensitive aldehyde dehydrogenase regulates hematopoietic stem and progenitor cells development during primitive hematopoiesis in zebrafish embryos.
Although aldehyde dehydrogenase (ALDH) activity has become a surrogate of hematopoietic stem and progenitor cells (HSPCs),its function during hematopoiesis was unclear. Here,we examined its role in zebrafish hematopoiesis based on pharmacological inhibition and morpholino (MO) knockdown. Zebrafish embryos were treated with diethylaminobenzaldehyde (DEAB,1 μmol/l) between 0- and 48 hour-post-fertilization (hpf). MOs targeting aldhs were injected between 1 and 4-cell stage. The effects on hematopoiesis were evaluated at different stages. DEAB treatment between 0 and 18 hpf increased gene expression associated with HSPC (scl,lmo2),erythropoiesis (gata1,α- and β-eHb) and myelopoiesis (spi1) as well as gfp(+) cells in dissociated Tg(gata1:gfp) embryos. The effects were ameliorated by all-trans retinoic acid (1 nmol/l). Definitive hematopoiesis and the erythromyeloid precursors were unaffected. In all,14 out of 15 zebrafish aldhs were detectable by reverse transcription PCR in 18 hpf embryos,of which only aldh1a2 and aldh16a1 were expressed in sites pertinent to hematopoiesis. Molecular targeting by MOs was demonstrated for 15 aldhs,but none of them,even in combined aldh1a2 and aldh1a3 knockdown,recapitulated the hematopoietic expansion in DEAB-treated embryos. In conclusion,DEAB expands HSPC population during primitive hematopoiesis through inhibition of aldh and retinoic acid synthesis. The specific aldh isoform(s) remains to be determined.
View Publication
产品类型:
产品号#:
01700
01705
产品名:
ALDEFLUOR™工具
ALDEFLUOR™DEAB试剂
文献
Pei Y et al. (MAR 2015)
Scientific reports 5 9205
A platform for rapid generation of single and multiplexed reporters in human iPSC lines.
Induced pluripotent stem cells (iPSC) are important tools for drug discovery assays and toxicology screens. In this manuscript,we design high efficiency TALEN and ZFN to target two safe harbor sites on chromosome 13 and 19 in a widely available and well-characterized integration-free iPSC line. We show that these sites can be targeted in multiple iPSC lines to generate reporter systems while retaining pluripotent characteristics. We extend this concept to making lineage reporters using a C-terminal targeting strategy to endogenous genes that express in a lineage-specific fashion. Furthermore,we demonstrate that we can develop a master cell line strategy and then use a Cre-recombinase induced cassette exchange strategy to rapidly exchange reporter cassettes to develop new reporter lines in the same isogenic background at high efficiency. Equally important we show that this recombination strategy allows targeting at progenitor cell stages,further increasing the utility of the platform system. The results in concert provide a novel platform for rapidly developing custom single or dual reporter systems for screening assays.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Ausubel LJ et al. (JAN 2011)
Methods in molecular biology (Clifton,N.J.) 767 147--159
GMP scale-up and banking of pluripotent stem cells for cellular therapy applications.
Human pluripotent stem cells (PSCs),which include human embryonic stem cells (ESCs) as well as induced pluripotent stem cells (iPSCs),represent an important source of cellular therapies in regenerative medicine and the study of early human development. As such,it is becoming increasingly important to develop methods for the large-scale banking of human PSC lines. There are several well-established methods for the propagation of human PSCs. The key to development of a good manufacturing practice (GMP) bank is to determine a manufacturing method that is amenable to large-scale production using materials that are fully documented. We have developed several banks of hESCs using animal feeder cells,animal-based matrices,or animal-free matrices. Protocols for growing hESCs on mouse embryonic fibroblasts (MEFs) are well established and are very helpful for producing research grade banks of cells. As most human ESCs cultured by research laboratories have been exposed to xenogeneic reagents,it is not imperative that all materials used in the production of a master cell bank be animal-free in origin. Nevertheless,as the field develops,it will no doubt become increasingly important to produce a bank of cells for clinical use without xenogeneic reagents,particularly nonhuman feeder cells which might harbor viruses with potential risk to human health or cell product integrity. Thus,even for cell lines previously exposed to xenogeneic reagents,it is important to minimize any subsequent exposure of the cell lines to additional adventitious agents. We have specifically described procedures for the growth of hESCs on Matrigel,an animal-matrix,and CELLstart,an animal-free matrix,and these can be used to produce hESCs as part of a clinical manufacturing process.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Baarine M et al. (NOV 2015)
PLoS ONE 10 11 e0143238
Functional characterization of IPSC-derived brain cells as a model for X-linked adrenoleukodystrophy
X-ALD is an inherited neurodegenerative disorder where mutations in the ABCD1 gene result in clinically diverse phenotypes: the fatal disorder of cerebral childhood ALD (cALD) or a milder disorder of adrenomyeloneuropathy (AMN). The various models used to study the pathobiology of X-ALD disease lack the appropriate presentation for different phenotypes of cALD vs AMN. This study demonstrates that induced pluripotent stem cells (IPSC) derived brain cells astrocytes (Ast),neurons and oligodendrocytes (OLs) express morphological and functional activities of the respective brain cell types. The excessive accumulation of saturated VLCFA,a hallmark" of X-ALD�
View Publication
C. Onyilagha et al. (jun 2019)
Journal of immunology (Baltimore,Md. : 1950)
NK Cells Are Critical for Optimal Immunity to Experimental Trypanosoma congolense Infection.
NK cells are key innate immune cells that play critical roles in host defense. Although NK cells have been shown to regulate immunity to some infectious diseases,their role in immunity to Trypanosoma congolense has not been investigated. NK cells are vital sources of IFN-gamma and TNF-alpha; two key cytokines that are known to play important roles in resistance to African trypanosomes. In this article,we show that infection with T. congolense leads to increased levels of activated and functional NK cells in multiple tissue compartments. Systemic depletion of NK cells with anti-NK1.1 mAb led to increased parasitemia,which was accompanied by significant reduction in IFN-gamma production by immune cells in the spleens and liver of infected mice. Strikingly,infected NFIL3-/- mice (which genetically lack NK cell development and function) on the normally resistant background were highly susceptible to T. congolense infection. These mice developed fulminating and uncontrolled parasitemia and died significantly earlier (13 ± 1 d) than their wild-type control mice (106 ± 26 d). The enhanced susceptibility of NFIL3-/- mice to infection was accompanied by significantly impaired cytokine (IFN-gamma and TNF-alpha) response by CD3+ T cells in the spleens and liver. Adoptive transfer of NK cells into NFIL3-/- mice before infection rescued them from acute death in a perforin-dependent manner. Collectively,these studies show that NK cells are critical for optimal resistance to T. congolense,and its deficiency leads to enhanced susceptibility in infected mice.
View Publication
产品类型:
产品号#:
19855
19855RF
产品名:
EasySep™小鼠NK细胞分选试剂盒
RoboSep™ 小鼠NK细胞分选试剂盒
文献
D'Aiuto L et al. ( 2012)
PLoS ONE 7 11 e49700
Human Induced Pluripotent Stem Cell-Derived Models to Investigate Human Cytomegalovirus Infection in Neural Cells
Human cytomegalovirus (HCMV) infection is one of the leading prenatal causes of congenital mental retardation and deformities world-wide. Access to cultured human neuronal lineages,necessary to understand the species specific pathogenic effects of HCMV,has been limited by difficulties in sustaining primary human neuronal cultures. Human induced pluripotent stem (iPS) cells now provide an opportunity for such research. We derived iPS cells from human adult fibroblasts and induced neural lineages to investigate their susceptibility to infection with HCMV strain Ad169. Analysis of iPS cells,iPS-derived neural stem cells (NSCs),neural progenitor cells (NPCs) and neurons suggests that (i) iPS cells are not permissive to HCMV infection,i.e.,they do not permit a full viral replication cycle; (ii) Neural stem cells have impaired differentiation when infected by HCMV; (iii) NPCs are fully permissive for HCMV infection; altered expression of genes related to neural metabolism or neuronal differentiation is also observed; (iv) most iPS-derived neurons are not permissive to HCMV infection; and (v) infected neurons have impaired calcium influx in response to glutamate.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Lancaster MA and Knoblich JA (OCT 2014)
Nature protocols 9 10 2329--2340
Generation of cerebral organoids from human pluripotent stem cells.
Human brain development exhibits several unique aspects,such as increased complexity and expansion of neuronal output,that have proven difficult to study in model organisms. As a result,in vitro approaches to model human brain development and disease are an intense area of research. Here we describe a recently established protocol for generating 3D brain tissue,so-called cerebral organoids,which closely mimics the endogenous developmental program. This method can easily be implemented in a standard tissue culture room and can give rise to developing cerebral cortex,ventral telencephalon,choroid plexus and retinal identities,among others,within 1-2 months. This straightforward protocol can be applied to developmental studies,as well as to the study of a variety of human brain diseases. Furthermore,as organoids can be maintained for more than 1 year in long-term culture,they also have the potential to model later events such as neuronal maturation and survival.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Setoguchi K et al. (APR 2016)
Journal of Molecular Biology 428 7 1465--1475
P53 Regulates Rapid Apoptosis in Human Pluripotent Stem Cells
Human pluripotent stem cells (hPSCs) are sensitive to DNA damage and undergo rapid apoptosis compared to their differentiated progeny cells. Here,we explore the underlying mechanisms for the increased apoptotic sensitivity of hPSCs that helps to determine pluripotent stem cell fate. Apoptosis was induced by exposure to actinomycin D,etoposide,or tunicamycin,with each agent triggering a distinct apoptotic pathway. We show that hPSCs are more sensitive to all three types of apoptosis induction than are lineage-non-specific,retinoic-acid-differentiated hPSCs. Also,Bax activation and pro-apoptotic mitochondrial intermembrane space protein release,which are required to initiate the mitochondria-mediated apoptosis pathway,are more rapid in hPSCs than in retinoic-acid-differentiated hPSCs. Surprisingly,Bak and not Bax is essential for actinomycin-D-induced apoptosis in human embryonic stem cells. Finally,P53 is degraded rapidly in an ubiquitin-proteasome-dependent pathway in hPSCs at steady state but quickly accumulates and induces apoptosis when Mdm2 function is impaired. Rapid degradation of P53 ensures the survival of healthy hPSCs but avails these cells for immediate apoptosis upon cellular damage by P53 stabilization. Altogether,we provide an underlying,interconnected molecular mechanism that primes hPSCs for quick clearance by apoptosis to eliminate hPSCs with unrepaired genome alterations and preserves organismal genomic integrity during the early critical stages of human embryonic development.
View Publication
产品类型:
产品号#:
07923
85850
85857
产品名:
Dispase (1 U/mL)
mTeSR™1
mTeSR™1
文献
Phadnis SM et al. (SEP 2015)
Scientific reports 5 14209
Dynamic and social behaviors of human pluripotent stem cells.
Human pluripotent stem cells (hPSCs) can self-renew or differentiate to diverse cell types,thus providing a platform for basic and clinical applications. However,pluripotent stem cell populations are heterogeneous and functional properties at the single cell level are poorly documented leading to inefficiencies in differentiation and concerns regarding reproducibility and safety. Here,we use non-invasive time-lapse imaging to continuously examine hPSC maintenance and differentiation and to predict cell viability and fate. We document dynamic behaviors and social interactions that prospectively distinguish hPSC survival,self-renewal,and differentiation. Results highlight the molecular role of E-cadherin not only for cell-cell contact but also for clonal propagation of hPSCs. Results indicate that use of continuous time-lapse imaging can distinguish cellular heterogeneity with respect to pluripotency as well as a subset of karyotypic abnormalities whose dynamic properties were monitored.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Sagi I et al. (APR 2016)
Nature 532 7597 107--11
Derivation and differentiation of haploid human embryonic stem cells.
Diploidy is a fundamental genetic feature in mammals,in which haploid cells normally arise only as post-meiotic germ cells that serve to ensure a diploid genome upon fertilization. Gamete manipulation has yielded haploid embryonic stem (ES) cells from several mammalian species,but haploid human ES cells have yet to be reported. Here we generated and analysed a collection of human parthenogenetic ES cell lines originating from haploid oocytes,leading to the successful isolation and maintenance of human ES cell lines with a normal haploid karyotype. Haploid human ES cells exhibited typical pluripotent stem cell characteristics,such as self-renewal capacity and a pluripotency-specific molecular signature. Moreover,we demonstrated the utility of these cells as a platform for loss-of-function genetic screening. Although haploid human ES cells resembled their diploid counterparts,they also displayed distinct properties including differential regulation of X chromosome inactivation and of genes involved in oxidative phosphorylation,alongside reduction in absolute gene expression levels and cell size. Surprisingly,we found that a haploid human genome is compatible not only with the undifferentiated pluripotent state,but also with differentiated somatic fates representing all three embryonic germ layers both in vitro and in vivo,despite a persistent dosage imbalance between the autosomes and X chromosome. We expect that haploid human ES cells will provide novel means for studying human functional genomics and development.
View Publication
产品类型:
产品号#:
05110
85850
85857
产品名:
STEMdiff™权威内胚层检测试剂盒
mTeSR™1
mTeSR™1
文献
Barbaric I et al. (DEC 2011)
Cryobiology 63 3 298--305
Pinacidil enhances survival of cryopreserved human embryonic stem cells.
Human embryonic stem cells (hESCs) can be maintained as undifferentiated cells in vitro and induced to differentiate into a variety of somatic cell types. Thus,hESCs provide a source of differentiated cell types that could be used to replace diseased cells of a tissue. The efficient cryopreservation of hESCs is important for establishing effective stem cell banks,however,conventional slow freezing methods usually lead to low rates of recovery after thawing cells and their replating in culture. We have established a method for recovering cryopreserved hESCs using pinacidil and compared it to a method that employs the ROCK inhibitor Y-27632. We show that pinacidil is similar to Y-27632 in promoting survival of hESCs after cryopreservation. The cells exhibited normal hESC morphology,retained a normal karyotype,and expressed characteristic hESC markers (OCT4,SSEA3,SSEA4 and TRA-1-60). Moreover,the cells retained the capacity to differentiate into derivatives of all three embryonic germ layers as demonstrated by differentiation through embryoid body formation. Pinacidil has been used for many years as a vasodilator drug to treat hypertension and its manufacture and traceability are well defined. It is also considerably cheaper than Y-27632. Thus,the use of pinacidil offers an efficient method for recovery of cryopreserved dissociated human ES cells.
View Publication