Ong CHP et al. (DEC 2006)
American journal of physiology. Regulatory,integrative and comparative physiology 291 6 R1602--12
Regulation of progranulin expression in myeloid cells.
Progranulin (pgrn; granulin-epithelin precursor,PC-cell-derived growth factor,or acrogranin) is a multifunctional secreted glycoprotein implicated in tumorigenesis,development,inflammation,and repair. It is highly expressed in macrophage and monocyte-derived dendritic cells. Here we investigate its regulation in myeloid cells. All-trans retinoic acid (ATRA) increased pgrn mRNA levels in myelomonocytic cells (CD34(+) progenitors; monoblastic U-937; monocytic THP-1; progranulocytic HL-60; macrophage RAW 264.7) but not in nonmyeloid cells tested. Interleukin-4 impaired basal expression of pgrn in U-937. Differentiation agents DMSO,and,in U-937 only,phorbol ester [phorbol 12-myristate,13-acetate (PMA)] elevated pgrn mRNA expression late in differentiation,suggestive of roles for pgrn in more mature terminally differentiated granulocyte/monocytes rather than during growth or differentiation. The response of pgrn mRNA to ATRA differs in U-937 and HL-60 lineages. In U-937,ATRA and chemical differentiation agents greatly increased pgrn mRNA stability,whereas,in HL-60,ATRA accelerated pgrn mRNA turnover. The initial upregulation of pgrn mRNA after stimulation with ATRA was independent of de novo protein synthesis in U-937 but not HL-60. Chemical blockade of nuclear factor-kappaB (NF-kappaB) activation impaired ATRA-stimulated pgrn expression in HL-60 but not U-937,whereas in U-937 it blocked PMA-induced pgrn mRNA expression,suggestive of cell-specific roles for NF-kappaB in determining pgrn mRNA levels. We propose that: 1) ATRA regulates pgrn mRNA levels in myelomonocytic cells; 2) ATRA acts in a cell-specific manner involving the differential control of mRNA stability and differential requirement for NF-kappaB signaling; and 3) elevated pgrn mRNA expression is characteristic of more mature cells and does not stimulate differentiation.
View Publication
Kofanova OA et al. (JUN 2014)
Biopreservation and biobanking 12 3 206--16
Viable mononuclear cell stability study for implementation in a proficiency testing program: impact of shipment conditions.
The impact of shipping temperatures and preservation media used during transport of either peripheral blood mononuclear cells (PBMCs) or Jurkat cells was assessed,in view of implementing of a proficiency testing scheme on mononuclear cell viability. Samples were analyzed before and after shipment at different temperatures (ambient temperature,dry ice,and liquid nitrogen) and in different preservation media (serum with cryoprotectant,commercial cryopreservation solution,and room temperature transport medium). Sample quality was assessed by viability assays (Trypan Blue dye exclusion,flow cytometry,Cell Analysis System cell counting (CASY)),and by ELISpot functional assay. The liquid nitrogen storage and shipment were found to be the most stable conditions to preserve cell viability and functionality. However,we show that alternative high quality shipment conditions for viable cells are dry ice shipment and commercial cryopreservation solution. These were also cost-efficient shipment conditions,satisfying the requirements of a proficiency testing scheme for viable mononuclear cells. Room temperature transport medium dramatically and adversely affected the integrity of mononuclear cells.
View Publication
产品类型:
产品号#:
07930
07931
07940
07955
07959
产品名:
CryoStor® CS10
CryoStor® CS10
CryoStor® CS10
CryoStor® CS10
CryoStor® CS10
文献
El-Far M et al. (MAR 2016)
Scientific Reports 6 22902
Proinflammatory isoforms of IL-32 as novel and robust biomarkers for control failure in HIV-infected slow progressors.
HIV-infected slow progressors (SP) represent a heterogeneous group of subjects who spontaneously control HIV infection without treatment for several years while showing moderate signs of disease progression. Under conditions that remain poorly understood,a subgroup of these subjects experience failure of spontaneous immunological and virological control. Here we determined the frequency of SP subjects who showed loss of HIV control within our Canadian Cohort of HIV(+) Slow Progressors and identified the proinflammatory cytokine IL-32 as a robust biomarker for control failure. Plasmatic levels of the proinflammatory isoforms of IL-32 (mainly β and γ) at earlier clinic visits positively correlated with the decline of CD4 T-cell counts,increased viral load,lower CD4/CD8 ratio and levels of inflammatory markers (sCD14 and IL-6) at later clinic visits. We present here a proof-of-concept for the use of IL-32 as a predictive biomarker for disease progression in SP subjects and identify IL-32 as a potential therapeutic target.
View Publication
产品类型:
产品号#:
19852
19852RF
产品名:
EasySep™小鼠CD4+ T细胞分选试剂盒
RoboSep™ 小鼠CD4+ T细胞分选试剂盒
文献
Wei S et al. (AUG 2009)
Proceedings of the National Academy of Sciences of the United States of America 106 31 12974--9
A critical role for phosphatase haplodeficiency in the selective suppression of deletion 5q MDS by lenalidomide.
Lenalidomide is the first karyotype-selective therapeutic approved for the treatment of myelodysplastic syndromes (MDS) owing to high rates of erythroid and cytogenetic response in patients with chromosome 5q deletion [del(5q)]. Although haploinsufficiency for the RPS14 gene and others encoded within the common deleted region (CDR) have been implicated in the pathogenesis of the del(5q) phenotype,the molecular basis of the karyotype specificity of lenalidomide remains unexplained. We focused our analysis on possible haplodeficient enzymatic targets encoded within the CDR that play key roles in cell-cycle regulation. We show that the dual specificity phosphatases,Cdc25C and PP2Acalpha,which are coregulators of the G(2)-M checkpoint,are inhibited by lenalidomide. Gene expression was lower in MDS and acute myeloid leukemia (AML) specimens with del(5q) compared with those with alternate karyotypes. Lenalidomide inhibited phosphatase activity either directly (Cdc25C) or indirectly (PP2A) with corresponding retention of inhibitory phospho-tyrosine residues. Treatment of del(5q) AML cells with lenalidomide induced G(2) arrest and apoptosis,whereas there was no effect in nondel(5q) AML cells. Small interfering RNA (shRNA) suppression of Cdc25C and PP2Acalpha gene expression recapitulated del(5q) susceptibility to lenalidomide with induction of G(2) arrest and apoptosis in both U937 and primary nondel(5q) MDS cells. These data establish a role for allelic haplodeficiency of the lenalidomide inhibitable Cdc25C and PP2Acalpha phosphatases in the selective drug sensitivity of del(5q) MDS.
View Publication
产品类型:
产品号#:
15023
15063
15025
15065
产品名:
RosetteSep™ 人CD8+ T细胞富集抗体混合物
RosetteSep™人CD8+ T细胞富集抗体混合物
RosetteSep™人NK细胞富集抗体混合物
RosetteSep™人NK细胞富集抗体混合物
文献
Pond AC et al. ( 2013)
Stem cells (Dayton,Ohio) 31 1 10.1002/stem.1266
Fibroblast Growth Factor Receptor Signaling Is Essential for Normal Mammary Gland Development and Stem Cell Function
Fibroblast growth factor (FGF) signaling plays an important role in embryonic stem cells and adult tissue homeostasis,but the function of FGFs in mammary gland stem cells is less well defined. Both FGFR1 and FGFR2 are expressed in basal and luminal mammary epithelial cells (MECs),suggesting that together they might play a role in mammary gland development and stem cell dynamics. Previous studies have demonstrated that the deletion of FGFR2 resulted only in transient developmental defects in branching morphogenesis. Using a conditional deletion strategy,we investigated the consequences of FGFR1 deletion alone and then the simultaneous deletion of both FGFR1 and FGFR2 in the mammary epithelium. FGFR1 deletion using a keratin 14 promoter-driven Cre-recombinase resulted in an early,yet transient delay in development. However,no reduction in functional outgrowth potential was observed following limiting dilution transplantation analysis. In contrast,a significant reduction in outgrowth potential was observed upon the deletion of both FGFR1 and FGFR2 in MECs using adenovirus-Cre. Additionally,using a fluorescent reporter mouse model to monitor Cre-mediated recombination,we observed a competitive disadvantage following transplantation of both FGFR1/R2-null MECs,most prominently in the basal epithelial cells. This correlated with the complete loss of the mammary stem cell repopulating population in the FGFR1/R2-attenuated epithelium. FGFR1/R2-null MECs were partially rescued in chimeric outgrowths containing wild-type MECs,suggesting the potential importance of paracrine mechanisms involved in the maintenance of the basal epithelial stem cells. These studies document the requirement for functional FGFR signaling in mammary stem cells during development.
View Publication
Aladegbami B et al. (JUL 2017)
Scientific reports 7 1 5580
Epithelial cell specific Raptor is required for initiation of type 2 mucosal immunity in small intestine.
Intestinal tuft cells are one of 4 secretory cell linages in the small intestine and the source of IL-25,a critical initiator of the type 2 immune response to parasite infection. When Raptor,a critical scaffold protein for mammalian target of rapamycin complex 1 (mTORC1),was acutely deleted in intestinal epithelium via Tamoxifen injection in Tritrichomonas muris (Tm) infected mice,tuft cells,IL-25 in epithelium and IL-13 in the mesenchyme were significantly reduced,but Tm burden was not affected. When Tm infected mice were treated with rapamycin,DCLK1 and IL-25 expression in enterocytes and IL-13 expression in mesenchyme were diminished. After massive small bowel resection,tuft cells and Tm were diminished due to the diet used postoperatively. The elimination of Tm and subsequent re-infection of mice with Tm led to type 2 immune response only in WT,but Tm colonization in both WT and Raptor deficient mice. When intestinal organoids were stimulated with IL-4,tuft cells and IL-25 were induced in both WT and Raptor deficient organoids. In summary,our study reveals that enterocyte specific Raptor is required for initiating a type 2 immune response which appears to function through the regulation of mTORC1 activity.
View Publication