Functional Maturation of Human Stem Cell-Derived Neurons in Long-Term Cultures.
Differentiated neurons can be rapidly acquired,within days,by inducing stem cells to express neurogenic transcription factors. We developed a protocol to maintain long-term cultures of human neurons,called iNGNs,which are obtained by inducing Neurogenin-1 and Neurogenin-2 expression in induced pluripotent stem cells. We followed the functional development of iNGNs over months and they showed many hallmark properties for neuronal maturation,including robust electrical and synaptic activity. Using iNGNs expressing a variant of channelrhodopsin-2,called CatCh,we could control iNGN activity with blue light stimulation. In combination with optogenetic tools,iNGNs offer opportunities for studies that require precise spatial and temporal resolution. iNGNs developed spontaneous network activity,and these networks had excitatory glutamatergic synapses,which we characterized with single-cell synaptic recordings. AMPA glutamatergic receptor activity was especially dominant in postsynaptic recordings,whereas NMDA glutamatergic receptor activity was absent from postsynaptic recordings but present in extrasynaptic recordings. Our results on long-term cultures of iNGNs could help in future studies elucidating mechanisms of human synaptogenesis and neurotransmission,along with the ability to scale-up the size of the cultures.
View Publication
LFA-1 activity state on dendritic cells regulates contact duration with T cells and promotes T-cell priming.
A key event in the successful induction of adaptive immune responses is the antigen-specific activation of T cells by dendritic cells (DCs). Although LFA-1 (lymphocyte function-associated antigen 1) on T cells is considered to be important for antigen-specific T-cell activation,the role for LFA-1 on DCs remains elusive. Using 2 different approaches to activate LFA-1 on DCs,either by deletion of the αL-integrin cytoplasmic GFFKR sequence or by silencing cytohesin-1-interacting protein,we now provide evidence that DCs are able to make use of active LFA-1 and can thereby control the contact duration with naive T cells. Enhanced duration of DC/T-cell interaction correlates inversely with antigen-specific T-cell proliferation,generation of T-helper 1 cells,and immune responses leading to delayed-type hypersensitivity. We could revert normal interaction time and T-cell proliferation to wild-type levels by inhibition of active LFA-1 on DCs. Our data further suggest that cytohesin-1-interacting protein might be responsible for controlling LFA-1 deactivation on mature DCs. In summary,our findings indicate that LFA-1 on DCs needs to be in an inactive state to ensure optimal T-cell activation and suggest that regulation of LFA-1 activity allows DCs to actively control antigen-driven T-cell proliferation and effective immune responses.
View Publication
产品类型:
产品号#:
21000
20119
20155
产品名:
RoboSep™- S
RoboSep™ 吸头组件抛光剂
RoboSep™分选试管套装(9个塑料管+吸头保护器)
文献
Massa MG et al. ( 2016)
PLoS ONE 11 5 e0155274
Multiple sclerosis patient-specific primary neurons differentiated from urinary renal epithelial cells via induced pluripotent stem cells
As multiple sclerosis research progresses,it is pertinent to continue to develop suitable paradigms to allow for ever more sophisticated investigations. Animal models of multiple sclerosis,despite their continuing contributions to the field,may not be the most prudent for every experiment. Indeed,such may be either insufficient to reflect the functional impact of human genetic variations or unsuitable for drug screenings. Thus,we have established a cell- and patient-specific paradigm to provide an in vitro model within which to perform future genetic investigations. Renal proximal tubule epithelial cells were isolated from multiple sclerosis patients' urine and transfected with pluripotency-inducing episomal factors. Subsequent induced pluripotent stem cells were formed into embryoid bodies selective for ectodermal lineage,resulting in neural tube-like rosettes and eventually neural progenitor cells. Differentiation of these precursors into primary neurons was achieved through a regimen of neurotrophic and other factors. These patient-specific primary neurons displayed typical morphology and functionality,also staining positive for mature neuronal markers. The development of such a non-invasive procedure devoid of permanent genetic manipulation during the course of differentiation,in the context of multiple sclerosis,provides an avenue for studies with a greater cell- and human-specific focus,specifically in the context of genetic contributions to neurodegeneration and drug discovery.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
O. Courtemanche et al. (oct 2022)
Respiratory research 23 1 275
Co-modulation of T cells and B cells enhances the inhibition of inflammation in experimental hypersensitivity pneumonitis.
BACKGROUND Hypersensitivity pneumonitis (HP) is an interstitial lung disease characterized by antigen-triggered neutrophilic exacerbations. Although CD4+ T cells are sufficient for HP pathogenesis,this never translated into efficient T cell-specific therapies. Increasing evidence shows that B cells also play decisive roles in HP. Here,we aimed to further define the respective contributions of B and T cells in subacute experimental HP. METHODS Mice were subjected to a protocol of subacute exposure to the archaeon Methanosphaera stadmanae to induce experimental HP. Using models of adoptive transfers of B cells and T cells in Rag1-deficient mice and of B cell-specific S1P1 deletion,we assessed the importance of B cells in the development of HP by evaluating inflammation in bronchoalveolar lavage fluid. We also aimed to determine if injected antibodies targeting B and/or T cells could alleviate HP exacerbations using a therapeutic course of intervention. RESULTS Even though B cells are not sufficient to induce HP,they strongly potentiate CD4+ T cell-induced HP?‘associated neutrophilic inflammation in the airways. However,the reduction of 85% of lung B cells in mice with a CD19-driven S1P1 deletion does not dampen HP inflammation,suggesting that lung B cells are not necessary in large numbers to sustain local inflammation. Finally,we found that injecting antibodies targeting B cells after experimental HP was induced does not dampen neutrophilic exacerbation. Yet,injection of antibodies directed against B cells and T cells yielded a potent 76% inhibition of neutrophilic accumulation in the lungs. This inhibition occurred despite partial,sometimes mild,depletion of B cells and T cells subsets. CONCLUSIONS Although B cells are required for maximal inflammation in subacute experimental HP,partial reduction of B cells fails to reduce HP-associated inflammation by itself. However,co-modulation of T cells and B cells yields enhanced inhibition of HP exacerbation caused by an antigenic rechallenge.
View Publication
产品类型:
产品号#:
19851
19854
产品名:
EasySep™小鼠T细胞分选试剂盒
EasySep™小鼠B细胞分选试剂盒
文献
Heintzman ND et al. (MAY 2009)
Nature 459 7243 108--12
Histone modifications at human enhancers reflect global cell-type-specific gene expression.
The human body is composed of diverse cell types with distinct functions. Although it is known that lineage specification depends on cell-specific gene expression,which in turn is driven by promoters,enhancers,insulators and other cis-regulatory DNA sequences for each gene,the relative roles of these regulatory elements in this process are not clear. We have previously developed a chromatin-immunoprecipitation-based microarray method (ChIP-chip) to locate promoters,enhancers and insulators in the human genome. Here we use the same approach to identify these elements in multiple cell types and investigate their roles in cell-type-specific gene expression. We observed that the chromatin state at promoters and CTCF-binding at insulators is largely invariant across diverse cell types. In contrast,enhancers are marked with highly cell-type-specific histone modification patterns,strongly correlate to cell-type-specific gene expression programs on a global scale,and are functionally active in a cell-type-specific manner. Our results define over 55,000 potential transcriptional enhancers in the human genome,significantly expanding the current catalogue of human enhancers and highlighting the role of these elements in cell-type-specific gene expression.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Swift S et al. (MAY 2010)
Blood 115 21 4254--63
Absence of functional EpoR expression in human tumor cell lines.
Certain oncology trials showed worse clinical outcomes in the erythropoiesis-stimulating agent (ESA) arm. A potential explanation was that ESA-activated erythropoietin (Epo) receptors (EpoRs) promoted tumor cell growth. Although there were supportive data from preclinical studies,those findings often used invalidated reagents and methodologies and were in conflict with other studies. Here,we further investigate the expression and function of EpoR in tumor cell lines. EpoR mRNA levels in 209 human cell lines representing 16 tumor types were low compared with ESA-responsive positive controls. EpoR protein production was evaluated in a subset of 66 cell lines using a novel anti-EpoR antibody. EpoR(+) control cells had an estimated 10 000 to 100 000 EpoR dimers/cell. In contrast,54 of 61 lines had EpoR protein levels lower than 100 dimers/cell. Cell lines with the highest EpoR protein levels (400-3200 dimers/cell) were studied further,and,although one line,NCI-H661,bound detectable levels of [(125)I]-recombinant human Epo (rHuEpo),none showed evidence of ESA-induced EpoR activation. There was no increased phosphorylation of STAT5,AKT,ERK,or S6RP with rHuEpo. In addition,EpoR knockdown with siRNAs did not affect viability in 2 cell lines previously reported to express functional EpoR (A2780 and SK-OV-3). These results conflict with the hypothesis that EpoR is functionally expressed in tumors.
View Publication
产品类型:
产品号#:
02690
09600
09650
产品名:
StemSpan™CC100
StemSpan™ SFEM
StemSpan™ SFEM
文献
Strö et al. (APR 2010)
In vitro cellular & developmental biology. Animal 46 3-4 337--344
Derivation of 30 human embryonic stem cell lines-improving the quality
We have derived 30 human embryonic stem cell lines from supernumerary blastocysts in our laboratory. During the derivation process,we have studied new and safe method to establish good quality lines. All our human embryonic stem cell lines have been derived using human foreskin fibroblasts as feeder cells. The 26 more recent lines were derived in a medium containing serum replacement instead of fetal calf serum. Mechanical isolation of the inner cell mass using flexible metal needles was used in deriving the 10 latest lines. The lines are karyotypically normal,but culture adaptation in two lines has been observed. Our human embryonic stem cell lines are banked,and they are available for researchers.
View Publication
产品类型:
产品号#:
07913
85850
85857
产品名:
Dispase(5 U/mL)
mTeSR™1
mTeSR™1
文献
Gendler SJ et al. (SEP 1990)
The Journal of biological chemistry 265 25 15286--93
Molecular cloning and expression of human tumor-associated polymorphic epithelial mucin.
Human mammary cells present on the cell surface a polymorphic epithelial mucin (PEM) which is developmentally regulated and aberrantly expressed in tumors. PEM carries tumor-associated epitopes recognized by the monoclonal antibodies HMFG-1,HMFG-2,and SM-3. Previously isolated partial cDNA clones revealed that the core protein contained a large domain consisting of variable numbers of 20-amino acid repeat units. We now report the full sequence for PEM,as deduced from cDNA sequences. The encoded protein consists of three distinct regions: the amino terminus consisting of a putative signal peptide and degenerate repeats; the major portion of the protein which is the tandem repeat region; the carboxyl terminus consisting of degenerate tandem repeats and a unique sequence containing a transmembrane sequence and a cytoplasmic tail. Potential O-glycosylation sites (serines or threonines) make up more than one-fourth of the amino acids. Length variations in the tandem repeat result in PEM being an expressed variable number tandem repeat locus. Tandem repeats appear to be a general characteristic of mucin core proteins.
View Publication
产品类型:
产品号#:
产品名:
文献
Chen S et al. (AUG 2007)
Journal of immunology (Baltimore,Md. : 1950) 179 3 1634--47
Modulatory effects of 1,25-dihydroxyvitamin D3 on human B cell differentiation.
1,25-Dihydroxyvitamin D(3) (1,25(OH)(2)D(3)) can modulate immune responses,but whether it directly affects B cell function is unknown. Patients with systemic lupus erythematosus,especially those with antinuclear Abs and increased disease activity,had decreased 1,25(OH)(2)D(3) levels,suggesting that vitamin D might play a role in regulating autoantibody production. To address this,we examined the effects of 1,25(OH)(2)D(3) on B cell responses and found that it inhibited the ongoing proliferation of activated B cells and induced their apoptosis,whereas initial cell division was unimpeded. The generation of plasma cells and postswitch memory B cells was significantly inhibited by 1,25(OH)(2)D(3),although the up-regulation of genetic programs involved in B cell differentiation was only modestly affected. B cells expressed mRNAs for proteins involved in vitamin D activity,including 1 alpha-hydroxylase,24-hydroxylase,and the vitamin D receptor,each of which was regulated by 1,25(OH)(2)D(3) and/or activation. Importantly,1,25(OH)(2)D(3) up-regulated the expression of p27,but not of p18 and p21,which may be important in regulating the proliferation of activated B cells and their subsequent differentiation. These results indicate that 1,25(OH)(2)D(3) may play an important role in the maintenance of B cell homeostasis and that the correction of vitamin D deficiency may be useful in the treatment of B cell-mediated autoimmune disorders.
View Publication
产品类型:
产品号#:
15024
15064
产品名:
RosetteSep™ 人B细胞富集抗体混合物
RosetteSep™人B细胞富集抗体混合物
文献
Linta L et al. (JUL 2013)
Annals of anatomy = Anatomischer Anzeiger : official organ of the Anatomische Gesellschaft 195 4 303--311
Calcium activated potassium channel expression during human iPS cell-derived neurogenesis.
The family of calcium activated potassium channels of low and intermediate conductance,known as SK channels,consists of four members (SK1-4). These channels are widely expressed throughout the organism and involved in various cellular processes,such as the afterhyperpolarization in excitable cells but also in differentiation processes of various tissues. To date,the role of SK channels in developmental processes has been merely a marginal focus of investigation,although it is well accepted that cell differentiation and maturation affect the expression patterns of certain ion channels. Recently,several studies from our laboratory delineated the influence of SK channel expression and their respective activity on cytoskeletal reorganization in neural and pluripotent stem cells and regulation of cell fate determination toward the cardiac lineage in human and mouse pluripotent stem cells. Herein,we have now analyzed SK channel expression patterns and distribution at various stages of human induced pluripotent stem cell-derived neurogenesis particularly focusing on undifferentiated iPS cells,neural progenitors and mature neurons. All family members could be detected starting at the iPS cell level and were differentially expressed during the subsequent maturation process. Intriguingly,we found obvious discrepancies between mRNA and protein expression pointing toward a complex regulatory mechanism. Inhibition of SK channels with either apamin or clotrimazol did not have any significant effects on the speed or amount of neurogenesis in vitro. The abundance and specific regulation of SK channel expression during iPS cell differentiation indicates distinct roles of these ion channels not only for the cardiac but also for neuronal cell differentiation and in vitro neurogenesis. ?? 2013 Elsevier GmbH.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Gu Y et al. (JAN 2014)
Protein & Cell 5 1 59--68
Global DNA methylation and transcriptional analyses of human ESC-derived cardiomyocytes
With defined culture protocol,human embryonic stem cells (hESCs) are able to generate cardiomyocytes in vitro,therefore providing a great model for human heart development,and holding great potential for cardiac disease therapies. In this study,we successfully generated a highly pure population of human cardiomyocytes (hCMs) (backslashtextgreater95% cTnT+) from hESC line,which enabled us to identify and characterize an hCM-specific signature,at both the gene expression and DNA methylation levels. Gene functional association network and gene-disease network analyses of these hCM-enriched genes provide new insights into the mechanisms of hCM transcriptional regulation,and stand as an informative and rich resource for investigating cardiac gene functions and disease mechanisms. Moreover,we show that cardiac-structural genes and cardiac-transcription factors have distinct epigenetic mechanisms to regulate their gene expression,providing a better understanding of how the epigenetic machinery coordinates to regulate gene expression in different cell types.
View Publication