Vazquez-Martin A et al. (MAR 2012)
Cell cycle (Georgetown,Tex.) 11 5 974--89
Activation of AMP-activated protein kinase (AMPK) provides a metabolic barrier to reprogramming somatic cells into stem cells.
The ability of somatic cells to reprogram their ATP-generating machinery into a Warburg-like glycolytic metabotype while overexpressing stemness genes facilitates their conversion into either induced pluripotent stem cells (iPSCs) or tumor-propagating cells. AMP-activated protein kinase (AMPK) is a metabolic master switch that senses and decodes intracellular changes in energy status; thus,we have evaluated the impact of AMPK activation in regulating the generation of iPSCs from nonstem cells of somatic origin. The indirect and direct activation of AMPK with the antidiabetic biguanide metformin and the thienopyridone A-769662,respectively,impeded the reprogramming of mouse embryonic and human diploid fibroblasts into iPSCs. The AMPK activators established a metabolic barrier to reprogramming that could not be bypassed,even through p53 deficiency,a fundamental mechanism to greatly improve the efficiency of stem-cell production. Treatment with metformin or A-769662 before the generation of iPSC colonies was sufficient to drastically decrease iPSC generation,suggesting that AMPK activation impedes early stem cell genetic reprogramming. Monitoring the transcriptional activation status of each individual reprogramming factor (i.e.,Oct4,Sox2,Klf4 and c-Myc) revealed that AMPK activation notably prevented the transcriptional activation of Oct4,the master regulator of the pluripotent state. AMPK activation appears to impose a normalized metabolic flow away from the required pro-immortalizing glycolysis that fuels the induction of stemness and pluripotency,endowing somatic cells with an energetic infrastructure that is protected against reprogramming. AMPK-activating anti-reprogramming strategies may provide a roadmap for the generation of novel cancer therapies that metabolically target tumor-propagating cells.
View Publication
产品类型:
产品号#:
72922
73252
73254
产品名:
A769662
二甲双胍 (Hydrochloride)
二甲双胍 (Hydrochloride)
文献
Liu P et al. (OCT 2013)
British journal of cancer 109 7 1876--1885
Disulfiram targets cancer stem-like cells and reverses resistance and cross-resistance in acquired paclitaxel-resistant triple-negative breast cancer cells.
BACKGROUND Triple-negative breast cancer (TNBC) has significantly worse prognosis. Acquired chemoresistance remains the major cause of therapeutic failure of TNBC. In clinic,the relapsed TNBC is commonly pan-resistant to various drugs with completely different resistant mechanisms. Investigation of the mechanisms and development of new drugs to target pan-chemoresistance will potentially improve the therapeutic outcomes of TNBC patients. METHODS In this study,1-(4,5-Dimethylthiazol-2-yl)-3,5-diphenylformazan (MTT),combination index (CI)-isobologram,western blot,ALDEFLUOR analysis,clonogenic assay and immunocytochemistry were used. RESULTS The chemoresistant MDA-MB-231PAC10 cells are highly cross-resistant to paclitaxel (PAC),cisplatin (CDDP),docetaxel and doxorubicin. The MDA-MB-231PAC10 cells are quiescent with significantly longer doubling time (64.9 vs 31.7 h). This may be caused by high expression of p21(Waf1). The MDA-MB-231PAC10 cells express high aldehyde dehydrogenase (ALDH) activity and a panel of embryonic stem cell-related proteins,for example,Oct4,Sox2,Nanog and nuclealisation of HIF2$$ and NF-$$Bp65. We have previously reported that disulfiram (DS),an antialcoholism drug,targets cancer stem cells (CSCs) and enhances cytotoxicity of anticancer drugs. Disulfiram abolished CSC characters and completely reversed PAC and CDDP resistance in MDA-MB-231PAC10 cells. CONCLUSION Cancer stem cells may be responsible for acquired pan-chemoresistance. As a drug used in clinic,DS may be repurposed as a CSC inhibitor to reverse the acquired pan-chemoresistance.
View Publication
产品类型:
产品号#:
01700
01705
产品名:
ALDEFLUOR™ 试剂盒
ALDEFLUOR™DEAB试剂
文献
Reya T and Clevers H (APR 2005)
Nature 434 7035 843--50
Wnt signalling in stem cells and cancer.
The canonical Wnt cascade has emerged as a critical regulator of stem cells. In many tissues,activation of Wnt signalling has also been associated with cancer. This has raised the possibility that the tightly regulated self-renewal mediated by Wnt signalling in stem and progenitor cells is subverted in cancer cells to allow malignant proliferation. Insights gained from understanding how the Wnt pathway is integrally involved in both stem cell and cancer cell maintenance and growth in the intestinal,epidermal and haematopoietic systems may serve as a paradigm for understanding the dual nature of self-renewal signals.
View Publication
产品类型:
产品号#:
72544
72552
72554
72562
72564
72672
72674
产品名:
IWP-3
IWP-4
IWP-4
IWR-1-endo
IWR-1-endo
XAV939
XAV939
文献
Wang X et al. (DEC 2013)
Oncogene 32 49 5512--21
PPARγ maintains ERBB2-positive breast cancer stem cells.
Overexpression of the adverse prognostic marker ERBB2 occurs in 30% of breast cancers and is associated with aggressive disease and poor outcomes. Our recent findings have shown that NR1D1 and the peroxisome proliferator-activated receptor-γ (PPARγ)-binding protein (PBP) act through a common pathway in upregulating several genes in the de novo fatty acid synthesis network,which is highly active in ERBB2-positive breast cancer cells. NR1D1 and PBP are functionally related to PPARγ,a well-established positive regulator of adipogenesis and lipid storage. Here,we report that inhibition of the PPARγ pathway reduces the aldehyde dehydrogenase (ALDH)-positive population in ERBB2-positive breast cancer cells. Results from in vitro tumorsphere formation assays demonstrate that the PPARγ antagonists GW9662 and T0070907 decrease tumorsphere formation in ERBB2-positive cells,but not other breast cells. We show that the mechanism by which GW9662 treatment causes a reduction in ALDH-positive population cells is partially due to ROS,as it can be rescued by treatment with N-acetyl-cysteine. Furthermore,global gene expression analyses show that GW9662 treatment suppresses the expression of several lipogenic genes,including ACLY,MIG12,FASN and NR1D1,and the stem-cell related genes KLF4 and ALDH in BT474 cells. Antagonist treatment also decreases the level of acetylation in histone 3 and histone 4 in BT474 cells,compared with MCF7 cells. In vivo,GW9662 pre-treatment inhibits the tumor-seeding ability of BT474 cells. Together,these results show that the PPARγ pathway is critical for the cancer stem cell properties of ERBB2-positive breast cancer cells.
View Publication