The nature and nurture of cell heterogeneity: accounting for macrophage gene-environment interactions with single-cell RNA-Seq.
BACKGROUND Single-cell RNA-Seq can be a valuable and unbiased tool to dissect cellular heterogeneity,despite the transcriptome's limitations in describing higher functional phenotypes and protein events. Perhaps the most important shortfall with transcriptomic 'snapshots' of cell populations is that they risk being descriptive,only cataloging heterogeneity at one point in time,and without microenvironmental context. Studying the genetic ('nature') and environmental ('nurture') modifiers of heterogeneity,and how cell population dynamics unfold over time in response to these modifiers is key when studying highly plastic cells such as macrophages. RESULTS We introduce the programmable Polaris microfluidic lab-on-chip for single-cell sequencing,which performs live-cell imaging while controlling for the culture microenvironment of each cell. Using gene-edited macrophages we demonstrate how previously unappreciated knockout effects of SAMHD1,such as an altered oxidative stress response,have a large paracrine signaling component. Furthermore,we demonstrate single-cell pathway enrichments for cell cycle arrest and APOBEC3G degradation,both associated with the oxidative stress response and altered proteostasis. Interestingly,SAMHD1 and APOBEC3G are both HIV-1 inhibitors ('restriction factors'),with no known co-regulation. CONCLUSION As single-cell methods continue to mature,so will the ability to move beyond simple 'snapshots' of cell populations towards studying the determinants of population dynamics. By combining single-cell culture,live-cell imaging,and single-cell sequencing,we have demonstrated the ability to study cell phenotypes and microenvironmental influences. It's these microenvironmental components - ignored by standard single-cell workflows - that likely determine how macrophages,for example,react to inflammation and form treatment resistant HIV reservoirs.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
J.-F. Fournier et al. (MAY 2018)
Journal of medicinal chemistry 61 9 4030--4051
Rational Drug Design of Topically Administered Caspase 1 Inhibitors for the Treatment of Inflammatory Acne.
The use of an interleukin beta$ antibody is currently being investigated in the clinic for the treatment of acne,a dermatological disorder affecting 650M persons globally. Inhibiting the protease responsible for the cleavage of inactive pro-IL1beta$ into active IL-1beta$,caspase-1,could be an alternative small molecule approach. This report describes the discovery of uracil 20,a potent (38 nM in THP1 cells assay) caspase-1 inhibitor for the topical treatment of inflammatory acne. The uracil series was designed according to a published caspase-1 pharmacophore model involving a reactive warhead in P1 for covalent reversible inhibition and an aryl moiety in P4 for selectivity against the apoptotic caspases. Reversibility was assessed in an enzymatic dilution assay or by using different substrate concentrations. In addition to classical structure-activity-relationship exploration,topical administration challenges such as phototoxicity,organic and aqueous solubility,chemical stability in solution,and skin metabolic stability are discussed and successfully resolved.
View Publication