Khalfallah O et al. (JUL 2009)
Stem cells (Dayton,Ohio) 27 7 1529--37
Dax-1 knockdown in mouse embryonic stem cells induces loss of pluripotency and multilineage differentiation.
Dax-1 (Nr0b1) is an orphan member of the nuclear hormone receptor superfamily that has a key role in adrenogonadal development and function. Recent studies have also implicated Dax-1 in the transcriptional network controlling embryonic stem (ES) cell pluripotency. Here,we show that Dax-1 expression is affected by differentiating treatments and pharmacological activation of beta-catenin-dependent transcription in mouse ES cells. Furthermore,Dax-1 knockdown induced upregulation of multilineage differentiation markers,and produced enhanced differentiation and defects in ES viability and proliferation. Through RNA interference and transcriptome analysis,we have identified genes regulated by Dax-1 in mouse ES cells at 24 and 48 hours after knockdown. Strikingly,the great majority of these genes are upregulated,showing that the prevalent function of Dax-1 is to act as a transcriptional repressor in mouse ES cells,as confirmed by experiments using the Gal4 system. Genes involved in tissue differentiation and control of proliferation are significantly enriched among Dax-1-regulated transcripts. These data show that Dax-1 is an essential element in the molecular circuit involved in the maintenance of ES cell pluripotency and have implications for the understanding of stem cell function in both physiological (adrenal gland) and clinical (Ewing tumors) settings where Dax-1 plays a pivotal role in development and pathogenesis,respectively.
View Publication
产品类型:
产品号#:
产品名:
文献
G. La Manno et al. (OCT 2016)
Cell 167 2 566--580.e19
Molecular Diversity of Midbrain Development in Mouse, Human, and Stem Cells.
Understanding human embryonic ventral midbrain is of major interest for Parkinson's disease. However,the cell types,their gene expression dynamics,and their relationship to commonly used rodent models remain to be defined. We performed single-cell RNA sequencing to examine ventral midbrain development in human and mouse. We found 25 molecularly defined human cell types,including five subtypes of radial glia-like cells and four progenitors. In the mouse,two mature fetal dopaminergic neuron subtypes diversified into five adult classes during postnatal development. Cell types and gene expression were generally conserved across species,but with clear differences in cell proliferation,developmental timing,and dopaminergic neuron development. Additionally,we developed a method to quantitatively assess the fidelity of dopaminergic neurons derived from human pluripotent stem cells,at a single-cell level. Thus,our study provides insight into the molecular programs controlling human midbrain development and provides a foundation for the development of cell replacement therapies.
View Publication
产品类型:
产品号#:
产品名:
文献
Li X et al. (MAY 2017)
Stem cell research 21 32--39
Pyrimidoindole derivative UM171 enhances derivation of hematopoietic progenitor cells from human pluripotent stem cells.
In the field of hematopoietic regeneration,deriving hematopoietic stem cells (HSCs) from pluripotent stem cells with engraftment potential is the central mission. Unstable hematopoietic differentiation protocol due to variation factors such as serums and feeder cells,remains a major technical issue impeding the screening of key factors for the derivation of HSCs. In combination with hematopoietic cytokines,UM171 has the capacity to facilitate the maintenance and expansion of human primary HSCs in vitro. Here,using a serum-free,feeder-free,and chemically defined induction protocol,we observed that UM171 enhanced hematopoietic derivation through the entire process of hematopoietic induction in vitro. UM171 facilitated generation of robust CD34(+)CD45(+) derivatives that formed more and larger sized CFU-GM as well as larger sized CFU-Mix. In our protocol,the derived hematopoietic progenitors failed to engraft in NOG mice,indicating the absence of long-term HSC from these progenitors. In combination with other factors and protocols,UM171 might be broadly used for hematopoietic derivation from human pluripotent stem cells in vitro.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Sata M et al. (APR 2002)
Nature medicine 8 4 403--9
Hematopoietic stem cells differentiate into vascular cells that participate in the pathogenesis of atherosclerosis.
Excessive accumulation of smooth-muscle cells (SMCs) has a key role in the pathogenesis of vascular diseases. It has been assumed that SMCs derived from the outer medial layer migrate,proliferate and synthesize extracellular matrix components on the luminal side of the vessel. Although much effort has been devoted to targeting migration and proliferation of medial SMCs,there is no effective therapy that prevents occlusive vascular remodeling. We show here that in models of post-angioplasty restenosis,graft vasculopathy and hyperlipidemia-induced atherosclerosis,bone-marrow cells give rise to most of the SMCs that contribute to arterial remodeling. Notably,purified hematopoietic stem cells differentiate into SMCs in vitro and in vivo. Our findings indicate that somatic stem cells contribute to pathological remodeling of remote organs,and may provide the basis for the development of new therapeutic strategies for vascular diseases through targeting mobilization,homing,differentiation and proliferation of bone marrow-derived vascular progenitor cells.
View Publication
Cytokine-regulated GADD45G induces differentiation and lineage selection in hematopoietic stem cells.
The balance of self-renewal and differentiation in long-term repopulating hematopoietic stem cells (LT-HSC) must be strictly controlled to maintain blood homeostasis and to prevent leukemogenesis. Hematopoietic cytokines can induce differentiation in LT-HSCs; however,the molecular mechanism orchestrating this delicate balance requires further elucidation. We identified the tumor suppressor GADD45G as an instructor of LT-HSC differentiation under the control of differentiation-promoting cytokine receptor signaling. GADD45G immediately induces and accelerates differentiation in LT-HSCs and overrides the self-renewal program by specifically activating MAP3K4-mediated MAPK p38. Conversely,the absence of GADD45G enhances the self-renewal potential of LT-HSCs. Videomicroscopy-based tracking of single LT-HSCs revealed that,once GADD45G is expressed,the development of LT-HSCs into lineage-committed progeny occurred within 36 hr and uncovered a selective lineage choice with a severe reduction in megakaryocytic-erythroid cells. Here,we report an unrecognized role of GADD45G as a central molecular linker of extrinsic cytokine differentiation and lineage choice control in hematopoiesis.
View Publication
产品类型:
产品号#:
72682
72684
产品名:
BIRB - 796
BIRB - 796
文献
Bhatia M et al. (SEP 1998)
Nature medicine 4 9 1038--45
A newly discovered class of human hematopoietic cells with SCID-repopulating activity.
The detection of primitive hematopoietic cells based on repopulation of immune-deficient mice is a powerful tool to characterize the human stem-cell compartment. Here,we identify a newly discovered human repopulating cell,distinct from previously identified repopulating cells,that initiates multilineage hematopoiesis in NOD/SCID mice. We call such cells CD34neg-SCID repopulating cells,or CD34neg-SRC. CD34neg-SRC are restricted to a Lin-CD34-CD38- population without detectable surface markers for multiple lineages and CD38 or those previously associated with stem cells (HLA-DR,Thy-1 and CD34). In contrast to CD34+ subfractions,Lin-CD34-CD38- cells have low clonogenicity in short-and long-term in vitro assays. The number of CD34neg-SRC increased in short-term suspension cultures in conditions that did not maintain SRC derived from CD34+ populations,providing independent biological evidence of their distinctiveness. The identification of this newly discovered cell demonstrates complexity of the organization of the human stem-cell compartment and has important implications for clinical applications involving stem-cell transplantation.
View Publication
Heterotopically transplanted CVO neural stem cells generate neurons and migrate with SVZ cells in the adult mouse brain.
Production of new neurons throughout adulthood has been well characterized in two brain regions,the subventricular zone (SVZ) of the anterolateral ventricle and the subgranular zone (SGZ) of the hippocampus. The neurons produced from these regions arise from neural stem cells (NSCs) found in highly regulated stem cell niches. We recently showed that midline structures called circumventricular organs (CVOs) also contain NSCs capable of neurogenesis and/or astrogliogenesis in vitro and in situ (Bennett et al.). The present study demonstrates that NSCs derived from two astrogliogenic CVOs,the median eminence and organum vasculosum of the lamina terminalis of the nestin-GFP mouse,possess the potential to integrate into the SVZ and differentiate into cells with a neuronal phenotype. These NSCs,following expansion and BrdU-labeling in culture and heterotopic transplantation into a region proximal to the SVZ in adult mice,migrate caudally to the SVZ and express early neuronal markers (TUC-4,PSA-NCAM) as they migrate along the rostral migratory stream. CVO-derived BrdU(+) cells ultimately reach the olfactory bulb where they express early (PSA-NCAM) and mature (NeuN) neuronal markers. Collectively,these data suggest that although NSCs derived from the ME and OVLT CVOs are astrogliogenic in situ,they produce cells phenotypic of neurons in vivo when placed in a neurogenic environment. These findings may have implications for neural repair in the adult brain.
View Publication
产品类型:
产品号#:
05700
05701
05702
产品名:
NeuroCult™ 基础培养基(小鼠和大鼠)
NeuroCult™ 扩增添加物(小鼠和大鼠)
NeuroCult™扩增试剂盒(小鼠和大鼠)
文献
Nakajima-Takagi Y et al. (JAN 2013)
Blood 121 3 447--458
Role of SOX17 in hematopoietic development from human embryonic stem cells
To search for genes that promote hematopoietic development from human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs),we overexpressed several known hematopoietic regulator genes in hESC/iPSC-derived CD34(+)CD43(-) endothelial cells (ECs) enriched in hemogenic endothelium (HE). Among the genes tested,only Sox17,a gene encoding a transcription factor of the SOX family,promoted cell growth and supported expansion of CD34(+)CD43(+)CD45(-/low) cells expressing the HE marker VE-cadherin. SOX17 was expressed at high levels in CD34(+)CD43(-) ECs compared with low levels in CD34(+)CD43(+)CD45(-) pre-hematopoietic progenitor cells (pre-HPCs) and CD34(+)CD43(+)CD45(+) HPCs. Sox17-overexpressing cells formed semiadherent cell aggregates and generated few hematopoietic progenies. However,they retained hemogenic potential and gave rise to hematopoietic progenies on inactivation of Sox17. Global gene-expression analyses revealed that the CD34(+)CD43(+)CD45(-/low) cells expanded on overexpression of Sox17 are HE-like cells developmentally placed between ECs and pre-HPCs. Sox17 overexpression also reprogrammed both pre-HPCs and HPCs into HE-like cells. Genome-wide mapping of Sox17-binding sites revealed that Sox17 activates the transcription of key regulator genes for vasculogenesis,hematopoiesis,and erythrocyte differentiation directly. Depletion of SOX17 in CD34(+)CD43(-) ECs severely compromised their hemogenic activity. These findings suggest that SOX17 plays a key role in priming hemogenic potential in ECs,thereby regulating hematopoietic development from hESCs/iPSCs.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Liang M et al. (MAR 2009)
The journal of gene medicine 11 3 185--96
Targeted transduction of CD34+ hematopoietic progenitor cells in nonpurified human mobilized peripheral blood mononuclear cells.
BACKGROUND: Conventional gene-therapy applications of hematopoietic stem cells (HSCs) involve purification of CD34+ progenitor cells from the mobilized peripheral blood,ex vivo transduction of the gene of interest into them,and reinfusion of the transduced CD34+ progenitor cells into patients. Eliminating the process of purification would save labor,time and money,while enhancing HSCs viability,transplantability and pluripotency. Lentiviral vectors have been widely used in gene therapy because they infect both dividing and nondividing cells and provide sustained transgene expression. One of the exceptions to this rule is quiescent primary lymphocytes,in which reverse transcription of viral DNA is not completed. METHODS: In the present study,we tested the possibility of targeting CD34+ progenitor cells within nonpurified human mobilized peripheral blood mononuclear cells (mPBMCs) utilizing vesicular stomatitis virus G (VSV-G) pseudotyped lentiviral vectors,based on the assumption that the CD34+ progenitor cells would be preferentially transduced. To further enhance the specificity of vector transduction,we also examined utilizing a modified Sindbis virus envelope (2.2) pseudotyped lentiviral vector,developed in our laboratory,that allows targeted transduction to specific cell receptors via antibody recognition. RESULTS: Both the VSV-G and 2.2 pseudotyped vectors achieved measurable results when they were used to target CD34+ progenitor cells in nonpurified mPBMCs. CONCLUSIONS: Overall,the data obtained demonstrate the potential of ex vivo targeting of CD34+ progenitor cells without purification.
View Publication
产品类型:
产品号#:
04434
04444
产品名:
MethoCult™H4434经典
MethoCult™H4434经典
文献
Johns JL et al. (SEP 2009)
Infection and immunity 77 9 4070--80
Infection with Anaplasma phagocytophilum induces multilineage alterations in hematopoietic progenitor cells and peripheral blood cells.
Infection with Anaplasma phagocytophilum,a gram-negative,lipopolysaccharide (LPS)-negative,obligate intracellular bacterium,results in multiple peripheral blood cytopenias. We hypothesized that infection with this organism would result in decreased bone marrow (BM) function and shifts in hematopoietic progenitor cells (HPCs) and lineage-committed cells in a well-established murine model of infection. HPCs and lineage-committed progenitors were enumerated in the BM and spleen during acute infection. BM cytokine production and BM CXCL12 expression were determined. Infection resulted in peripheral blood bicytopenia,marked decreases in the number of lineage-committed HPCs in the BM along with concurrent increases in the number of lineage-committed HPCs in the spleen,and a mixed,predominantly myelosuppressive BM cytokine environment. There was significant downregulation of CXCL12 in BM cells that may have been partially responsible for changes in HPC trafficking observed. Changes occurred in the absence of direct pathogen infection of BM cells. Hematopoietic lineage assessment demonstrated that there was loss of erythrocytes and B lymphocytes from the BM along with increased granulopoiesis. These changes were accompanied by splenomegaly due to lymphoid hyperplasia and increased hematopoiesis,most notably erythropoiesis. These changes largely mimic well-described inflammation and endotoxin-mediated effects on the BM and spleen; however,the numbers of peripheral blood neutrophils appear to be independently modulated as granulocytic hyperplasia does not result in neutrophilia. Our findings highlight a well-conserved series of events that we demonstrate can be instigated by an LPS-negative pathogen in the absence of an endotoxin-mediated acute proinflammatory response.
View Publication
产品类型:
产品号#:
03434
03444
09600
09650
产品名:
MethoCult™GF M3434
MethoCult™GF M3434
StemSpan™ SFEM
StemSpan™ SFEM
文献
L. Starck et al. ( 2014)
The Journal of Immunology 192 206-213
Immunotherapy with TCR-Redirected T Cells: Comparison of TCR-Transduced and TCR-Engineered Hematopoietic Stem Cell-Derived T Cells
Redirecting Ag specificity by transfer of TCR genes into PBLs is an attractive method to generate large numbers of cytotoxic T cells for immunotherapy of cancer and viral diseases. However,transferred TCR chains can pair with endogenous TCR chains,resulting in the formation of mispaired TCR dimers and decreased or unspecific reactivity. TCR gene transfer into hematopoietic stem cells (HSCs) is an alternative to create T cells with desired Ag specificity,because in this case expression of endogenous TCR chains is then less likely owing to allelic exclusion. We generated TCR-transduced T cells from peripheral T cells using the lymphocytic choriomeningitis virus-specific P14 TCR. After transfer of the P14 TCR genes into HSCs and subsequent reconstitution of irradiated mice,TCR-engineered HSC-derived T cells were produced. We then compared the Ag-specific T cell populations with P14 TCR-transgenic T cells for their therapeutic efficiency in three in vivo models. In this study,we demonstrate that TCR-transduced T cells and TCR-engineered HSC-derived T cells are comparable in controlling lymphocytic choriomeningitis virus infection in mice and suppress growth of B16 tumor cells expressing the cognate Ag in a comparable manner.
View Publication
产品类型:
产品号#:
18756
产品名:
EasySep™小鼠SCA1正选试剂盒
文献
Burdon T et al. (JUN 1999)
Developmental biology 210 1 30--43
Suppression of SHP-2 and ERK signalling promotes self-renewal of mouse embryonic stem cells.
The propagation of pluripotent mouse embryonic stem (ES) cells depends on signals transduced through the cytokine receptor subunit gp130. Signalling molecules activated downstream of gp130 in ES cells include STAT3,the protein tyrosine phosphatase SHP-2,and the mitogen-activated protein kinases,ERK1 and ERK2. A chimaeric receptor in which tyrosine 118 in the gp130 cytoplasmic domain was mutated did not engage SHP-2 and failed to activate ERKs. However,this receptor did support ES cell self-renewal. In fact,stem cell colonies formed at 100-fold lower concentrations of cytokine than the unmodified receptor. Moreover,altered ES cell morphology and growth were observed at high cytokine concentrations. These indications of deregulated signalling in the absence of tyrosine 118 were substantiated by sustained activation of STAT3. Confirmation that ERK activation is not required for self-renewal was obtained by propagation of pluripotent ES cells in the presence of the MEK inhibitor PD098059. In fact,the growth of undifferentiated ES cells was enhanced by culture in PD098059. Thus activation of ERKs appears actively to impair self-renewal. These data imply that the self-renewal signal from gp130 is a finely tuned balance of positive and negative effectors.
View Publication