Du S-HH et al. (AUG 2015)
Journal of bioscience and bioengineering 120 2 210--217
Human iPS cell-derived fibroblast-like cells as feeder layers for iPS cell derivation and expansion
Mouse embryonic fibroblasts (MEFs) are commonly used as feeder cells for the generation of human induced pluripotent stem cells (hiPSCs). However,medical applications of cell derivatives of hiPSCs generated with a MEF feeder system run the risk of having xeno-factor contamination due to long-term cell culturing under an animal factor-containing environment. We developed a new method for the derivation of human fibroblast-like cells (FLCs) from a previously established hiPSC line in an FLC differentiation medium. The method was based on direct differentiation of hiPSCs seeded on Matrigel followed by expansion of differentiating cells on gelatin. Using inactivated FLCs as feeder layers,primary human foreskin fibroblasts were successfully reprogrammed into a state of pluripotency by Oct4,Sox2 Klf4,and c-Myc (OSKM) transcription factor genes,with a reprogramming efficiency under an optimized condition superior to that obtained on MEF feeder layers. Furthermore,the FLCs were more effective in supporting the growth of human pluripotent stem cells. The pluripotency and differentiation capability of the cells cultured on FLC feeder layers were well retained. Our results suggest that FLCs are a safe alternative to MEFs for hiPSC generation and expansion,especially in the clinical settings wherein hiPSC derivatives will be used for medical treatment.
View Publication
产品类型:
产品号#:
07923
85850
85857
产品名:
Dispase (1 U/mL)
mTeSR™1
mTeSR™1
文献
Maherali N et al. (SEP 2008)
Cell stem cell 3 3 340--5
A high-efficiency system for the generation and study of human induced pluripotent stem cells.
Direct reprogramming of human fibroblasts to a pluripotent state has been achieved through ectopic expression of the transcription factors OCT4,SOX2,and either cMYC and KLF4 or NANOG and LIN28. Little is known,however,about the mechanisms by which reprogramming occurs,which is in part limited by the low efficiency of conversion. To this end,we sought to create a doxycycline-inducible lentiviral system to convert primary human fibroblasts and keratinocytes into human induced pluripotent stem cells (hiPSCs). hiPSCs generated with this system were molecularly and functionally similar to human embryonic stem cells (hESCs),demonstrated by gene expression profiles,DNA methylation status,and differentiation potential. While expression of the viral transgenes was required for several weeks in fibroblasts,we found that 10 days was sufficient for the reprogramming of keratinocytes. Using our inducible system,we developed a strategy to induce hiPSC formation at high frequency. Upon addition of doxycycline to hiPSC-derived differentiated cells,we obtained secondary" hiPSCs at a frequency at least 100-fold greater than the initial conversion. The ability to reprogram cells at high efficiency provides a unique platform to dissect the underlying molecular and biochemical processes that accompany nuclear reprogramming."
View Publication
产品类型:
产品号#:
72742
产品名:
强力霉素(盐酸盐)
文献
Ohgushi M et al. (AUG 2010)
Cell stem cell 7 2 225--39
Molecular pathway and cell state responsible for dissociation-induced apoptosis in human pluripotent stem cells.
Human embryonic stem cells (hESCs),unlike mouse ones (mESCs),are vulnerable to apoptosis upon dissociation. Here,we show that the apoptosis,which is of a nonanoikis type,is caused by ROCK-dependent hyperactivation of actomyosin and efficiently suppressed by the myosin inhibitor Blebbistatin. The actomyosin hyperactivation is triggered by the loss of E-cadherin-dependent intercellular contact and also observed in dissociated mouse epiblast-derived pluripotent cells but not in mESCs. We reveal that Abr,a unique Rho-GEF family factor containing a functional Rac-GAP domain,is an indispensable upstream regulator of the apoptosis and ROCK/myosin hyperactivation. Rho activation coupled with Rac inhibition is induced in hESCs upon dissociation,but not in Abr-depleted hESCs or mESCs. Furthermore,artificial Rho or ROCK activation with Rac inhibition restores the vulnerability of Abr-depleted hESCs to dissociation-induced apoptosis. Thus,the Abr-dependent Rho-high/Rac-low" state plays a decisive role in initiating the dissociation-induced actomyosin hyperactivation and apoptosis in hESCs."
View Publication
Porayette P et al. (DEC 2007)
Biochemical and biophysical research communications 364 3 522--527
Amyloid-?? precursor protein expression and modulation in human embryonic stem cells: A novel role for human chorionic gonadotropin
The amyloid-beta precursor protein (AbetaPP) is a ubiquitously expressed adhesion and neuritogenic protein whose processing has previously been shown to be regulated by reproductive hormones including the gonadotropin luteinizing hormone (LH) in human neuroblastoma cells. We report for the first time the expression of AbetaPP in human embryonic stem (hES) cells at the mRNA and protein levels. Using N- and C-terminal antibodies against AbetaPP,we detected both the mature and immature forms of AbetaPP as well as truncated variants ( approximately 53kDa,47kDa,and 29kDa) by immunoblot analyses. Expression of AbetaPP is regulated by both the stemness of the cells and pregnancy-associated hormones. Addition of human chorionic gonadotropin,the fetal equivalent of LH that is dramatically elevated during pregnancy,markedly increased the expression of all AbetaPP forms. These results indicate a critical molecular signaling link between the hormonal environment of pregnancy and the expression of AbetaPP in hES cells that is suggestive of an important function for this protein during early human embryogenesis prior to the formation of neural precursor cells.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Chen G et al. (AUG 2010)
Cell stem cell 7 2 240--8
Actin-myosin contractility is responsible for the reduced viability of dissociated human embryonic stem cells.
Human ESCs are the pluripotent precursor of the three embryonic germ layers. Human ESCs exhibit basal-apical polarity,junctional complexes,integrin-dependent matrix adhesion,and E-cadherin-dependent cell-cell adhesion,all characteristics shared by the epiblast epithelium of the intact mammalian embryo. After disruption of epithelial structures,programmed cell death is commonly observed. If individualized human ESCs are prevented from reattaching and forming colonies,their viability is significantly reduced. Here,we show that actin-myosin contraction is a critical effector of the cell death response to human ESC dissociation. Inhibition of myosin heavy chain ATPase,downregulation of myosin heavy chain,and downregulation of myosin light chain all increase survival and cloning efficiency of individualized human ESCs. ROCK inhibition decreases phosphorylation of myosin light chain,suggesting that inhibition of actin-myosin contraction is also the mechanism through which ROCK inhibitors increase cloning efficiency of human ESCs.
View Publication
产品类型:
产品号#:
72402
72404
85850
85857
产品名:
(-)-Blebbistatin
(-)-Blebbistatin
mTeSR™1
mTeSR™1
文献
Zhang R et al. (JAN 2013)
Nature communications 4 1335
A thermoresponsive and chemically defined hydrogel for long-term culture of human embryonic stem cells
Cultures of human embryonic stem cell typically rely on protein matrices or feeder cells to support attachment and growth,while mechanical,enzymatic or chemical cell dissociation methods are used for cellular passaging. However,these methods are ill defined,thus introducing variability into the system,and may damage cells. They also exert selective pressures favouring cell aneuploidy and loss of differentiation potential. Here we report the identification of a family of chemically defined thermoresponsive synthetic hydrogels based on 2-(diethylamino)ethyl acrylate,which support long-term human embryonic stem cell growth and pluripotency over a period of 2-6 months. The hydrogels permitted gentle,reagent-free cell passaging by virtue of transient modulation of the ambient temperature from 37 to 15 °C for 30 min. These chemically defined alternatives to currently used,undefined biological substrates represent a flexible and scalable approach for improving the definition,efficacy and safety of human embryonic stem cell culture systems for research,industrial and clinical applications.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Carpentier A et al. (MAR 2016)
Stem Cell Research 16 3 640--650
Hepatic differentiation of human pluripotent stem cells in miniaturized format suitable for high-throughput screen
The establishment of protocols to differentiate human pluripotent stem cells (hPSCs) including embryonic (ESC) and induced pluripotent (iPSC) stem cells into functional hepatocyte-like cells (HLCs) creates new opportunities to study liver metabolism,genetic diseases and infection of hepatotropic viruses (hepatitis B and C viruses) in the context of specific genetic background. While supporting efficient differentiation to HLCs,the published protocols are limited in terms of differentiation into fully mature hepatocytes and in a smaller-well format. This limitation handicaps the application of these cells to high-throughput assays. Here we describe a protocol allowing efficient and consistent hepatic differentiation of hPSCs in 384-well plates into functional hepatocyte-like cells,which remain differentiated for more than 3 weeks. This protocol affords the unique opportunity to miniaturize the hPSC-based differentiation technology and facilitates screening for molecules in modulating liver differentiation,metabolism,genetic network,and response to infection or other external stimuli.
View Publication
产品类型:
产品号#:
05110
85850
85857
产品名:
STEMdiff™权威内胚层检测试剂盒
mTeSR™1
mTeSR™1
文献
A. Holtzinger et al. ( 2015)
Development (Cambridge,England) 142 4253-65
New markers for tracking endoderm induction and hepatocyte differentiation from human pluripotent stem cells.
The efficient generation of hepatocytes from human pluripotent stem cells (hPSCs) requires the induction of a proper endoderm population,broadly characterized by the expression of the cell surface marker CXCR4. Strategies to identify and isolate endoderm subpopulations predisposed to the liver fate do not exist. In this study,we generated mouse monoclonal antibodies against human embryonic stem cell-derived definitive endoderm with the goal of identifying cell surface markers that can be used to track the development of this germ layer and its specification to a hepatic fate. Through this approach,we identified two endoderm-specific antibodies,HDE1 and HDE2,which stain different stages of endoderm development and distinct derivative cell types. HDE1 marks a definitive endoderm population with high hepatic potential,whereas staining of HDE2 tracks with developing hepatocyte progenitors and hepatocytes. When used in combination,the staining patterns of these antibodies enable one to optimize endoderm induction and hepatic specification from any hPSC line.
View Publication
产品类型:
产品号#:
03804
产品名:
ClonaCell™-HY Medium
文献
Rebel VI et al. (JAN 1994)
Blood 83 1 128--36
Amplification of Sca-1+ Lin- WGA+ cells in serum-free cultures containing steel factor, interleukin-6, and erythropoietin with maintenance of cells with long-term in vivo reconstituting potential.
Normal murine bone marrow (BM) cells were sorted on the basis of low forward and orthogonal light scatter properties,Sca-1 expression (Sca-1+),lack of staining with a cocktail of mature hematopoietic lineage markers (Lin-),and binding of wheat germ agglutinin (WGA+). This approach allowed the reproducible isolation of a very small subpopulation (0.037% +/- 0.023% of all nucleated BM cells) that was approximately 400-fold enriched in cells capable of reconstituting both lymphoid and myeloid lineages in lethally irradiated recipients. Transplantation of 30 or 10 of these Sca-1+Lin-WGA+ cells resulted in textgreater or = to 20% donor-derived nucleated peripheral blood cells 3 months posttransplantation in 100% and 22% of the recipients,respectively. When Sca-1+Lin-WGA+ cells were cultured in serum-free medium supplemented with Steel factor,interleukin-6 (IL-6),and erythropoietin (with or without IL-3),a large increase in total cell number,including cells with an Sca-1+Lin-WGA+ phenotype was observed. Single cell cultures showed that 90% to 95% of the input cells underwent at least one division during the first 2 weeks and the remainder died. Interestingly,this proliferative response was not accompanied by a parallel increase in the number of cells with both lymphoid and myeloid repopulating potential in vivo,as quantitation of these by limiting dilution analysis showed they had decreased slightly (1.3-fold) but not significantly below the number initially present. These results demonstrate that Sca-1+Lin-WGA+ cells with long-term repopulating potential can be maintained for 2 weeks in a serum- and stroma cell-free culture,providing a simple in vitro system to study their behavior under well-defined conditions. The observed expansion of Sca-1+Lin-WGA+ cells in vitro without a concomitant increase in reconstituting cells also shows that extensive functional heterogeneity exists within populations of cells with this surface phenotype.
View Publication
产品类型:
产品号#:
02690
02696
02697
09300
09500
09600
09650
产品名:
StemSpan™CC100
StemSpan™巨核细胞扩增补充(100X)
StemSpan™CC110
含有10% 牛血清白蛋白(BSA)的 Iscove's MDM
BIT 9500血清替代物
StemSpan™ SFEM
StemSpan™ SFEM
文献
James D et al. (MAR 2005)
Development (Cambridge,England) 132 6 1273--82
TGFbeta/activin/nodal signaling is necessary for the maintenance of pluripotency in human embryonic stem cells.
Human embryonic stem cells (hESCs) self-renew indefinitely and give rise to derivatives of all three primary germ layers,yet little is known about the signaling cascades that govern their pluripotent character. Because it plays a prominent role in the early cell fate decisions of embryonic development,we have examined the role of TGFbeta superfamily signaling in hESCs. We found that,in undifferentiated cells,the TGFbeta/activin/nodal branch is activated (through the signal transducer SMAD2/3) while the BMP/GDF branch (SMAD1/5) is only active in isolated mitotic cells. Upon early differentiation,SMAD2/3 signaling is decreased while SMAD1/5 signaling is activated. We next tested the functional role of TGFbeta/activin/nodal signaling in hESCs and found that it is required for the maintenance of markers of the undifferentiated state. We extend these findings to show that SMAD2/3 activation is required downstream of WNT signaling,which we have previously shown to be sufficient to maintain the undifferentiated state of hESCs. Strikingly,we show that in ex vivo mouse blastocyst cultures,SMAD2/3 signaling is also required to maintain the inner cell mass (from which stem cells are derived). These data reveal a crucial role for TGFbeta signaling in the earliest stages of cell fate determination and demonstrate an interconnection between TGFbeta and WNT signaling in these contexts.
View Publication
产品类型:
产品号#:
72232
72234
产品名:
SB431542(水合物)
SB431542(水合物)
文献
Kang L et al. ( 2013)
Frontiers in immunology 4 MAY 101
Characterization and ex vivo Expansion of Human Placenta-Derived Natural Killer Cells for Cancer Immunotherapy.
Recent clinical studies suggest that adoptive transfer of donor-derived natural killer (NK) cells may improve clinical outcome in hematological malignancies and some solid tumors by direct anti-tumor effects as well as by reduction of graft versus host disease (GVHD). NK cells have also been shown to enhance transplant engraftment during allogeneic hematopoietic stem cell transplantation (HSCT) for hematological malignancies. The limited ex vivo expansion potential of NK cells from peripheral blood (PB) or umbilical cord blood (UCB) has however restricted their therapeutic potential. Here we define methods to efficiently generate NK cells from donor-matched,full-term human placenta perfusate (termed Human Placenta-Derived Stem Cell,HPDSC) and UCB. Following isolation from cryopreserved donor-matched HPDSC and UCB units,CD56+CD3- placenta-derived NK cells,termed pNK cells,were expanded in culture for up to 3 weeks to yield an average of 1.2 billion cells per donor that were textgreater80% CD56+CD3-,comparable to doses previously utilized in clinical applications. Ex vivo-expanded pNK cells exhibited a marked increase in anti-tumor cytolytic activity coinciding with the significantly increased expression of NKG2D,NKp46,and NKp44 (p textless 0.001,p textless 0.001,and p textless 0.05,respectively). Strong cytolytic activity was observed against a wide range of tumor cell lines in vitro. pNK cells display a distinct microRNA (miRNA) expression profile,immunophenotype,and greater anti-tumor capacity in vitro compared to PB NK cells used in recent clinical trials. With further development,pNK may represent a novel and effective cellular immunotherapy for patients with high clinical needs and few other therapeutic options.
View Publication