Yabe S et al. (MAY 2016)
Proceedings of the National Academy of Sciences of the United States of America 113 19 E2598----607
Comparison of syncytiotrophoblast generated from human embryonic stem cells and from term placentas.
Human embryonic stem cells (ESCs) readily commit to the trophoblast lineage after exposure to bone morphogenetic protein-4 (BMP-4) and two small compounds,an activin A signaling inhibitor and a FGF2 signaling inhibitor (BMP4/A83-01/PD173074; BAP treatment). During differentiation,areas emerge within the colonies with the biochemical and morphological features of syncytiotrophoblast (STB). Relatively pure fractions of mononucleated cytotrophoblast (CTB) and larger syncytial sheets displaying the expected markers of STB can be obtained by differential filtration of dispersed colonies through nylon strainers. RNA-seq analysis of these fractions has allowed them to be compared with cytotrophoblasts isolated from term placentas before and after such cells had formed syncytia. Although it is clear from extensive gene marker analysis that both ESC- and placenta-derived syncytial cells are trophoblast,each with the potential to transport a wide range of solutes and synthesize placental hormones,their transcriptome profiles are sufficiently dissimilar to suggest that the two cell types have distinct pedigrees and represent functionally different kinds of STB. We propose that the STB generated from human ESCs represents the primitive syncytium encountered in early pregnancy soon after the human trophoblast invades into the uterine wall.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Singh AM et al. (APR 2016)
Methods in molecular biology (Clifton,N.J.)
Decoding the Epigenetic Heterogeneity of Human Pluripotent Stem Cells with Seamless Gene Editing.
Pluripotent stem cells exhibit cell cycle-regulated heterogeneity for trimethylation of histone-3 on lysine-4 (H3K4me3) on developmental gene promoters containing bivalent epigenetic domains. The heterogeneity of H3K4me3 can be attributed to Cyclin-dependent kinase-2 (CDK2) phosphorylation and activation of the histone methyltransferase,MLL2 (KMT2B),during late-G1. The deposition of H3K4me3 on developmental promoters in late-G1 establishes a permissive chromatin architecture that enables signaling cues to promote differentiation from the G1 phase. These data suggest that the inhibition of MLL2 phosphorylation and activation will prevent the initiation of differentiation. Here,we describe a method to seamlessly modify a putative CDK2 phosphorylation site on MLL2 to restrict its phosphorylation and activation. Specifically,by utilizing dimeric CRISPR RNA-guided nucleases,RFNs (commercially known as the NextGEN™ CRISPR),in combination with an excision-only piggyBac™ transposase,we demonstrate how to generate a point mutation of threonine-542,a predicted site to prevent MLL2 activation. This gene editing method enables the use of both positive and negative selection,and allows for subsequent removal of the donor cassette without leaving behind any unwanted DNA sequences or modifications. This seamless donor-excision" approach provides clear advantages over using single stranded oligo-deoxynucleotides (ssODN) as donors to create point mutations�
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Borowiak M et al. (APR 2009)
Cell stem cell 4 4 348--58
Small molecules efficiently direct endodermal differentiation of mouse and human embryonic stem cells.
An essential step for therapeutic and research applications of stem cells is the ability to differentiate them into specific cell types. Endodermal cell derivatives,including lung,liver,and pancreas,are of interest for regenerative medicine,but efforts to produce these cells have been met with only modest success. In a screen of 4000 compounds,two cell-permeable small molecules were indentified that direct differentiation of ESCs into the endodermal lineage. These compounds induce nearly 80% of ESCs to form definitive endoderm,a higher efficiency than that achieved by Activin A or Nodal,commonly used protein inducers of endoderm. The chemically induced endoderm expresses multiple endodermal markers,can participate in normal development when injected into developing embryos,and can form pancreatic progenitors. The application of small molecules to differentiate mouse and human ESCs into endoderm represents a step toward achieving a reproducible and efficient production of desired ESC derivatives.
View Publication
产品类型:
产品号#:
72314
72512
72514
产品名:
(-) -Indolactam V(吲哚内酰胺 V)
IDE1
IDE1
文献
Stingl J et al. (MAY 2001)
Breast cancer research and treatment 67 2 93--109
Characterization of bipotent mammary epithelial progenitor cells in normal adult human breast tissue.
The purpose of the present study was to characterize primitive epithelial progenitor populations present in adult normal human mammary tissue using a combination of flow cytometry and in vitro colony assay procedures. Three types of human breast epithelial cell (HBEC) progenitors were identified: luminal-restricted,myoepithelial-restricted and bipotent progenitors. The first type expressed epithelial cell adhesion molecule (EpCAM),alpha6 integrin and MUC1 and generated colonies composed exclusively of cells positive for the luminal-associated markers keratin 8/18,keratin 19,EpCAM and MUC1. Bipotent progenitors produced colonies containing a central core of cells expressing luminal markers surrounded by keratin 14+ myoepithelial-like cells. Single cell cultures confirmed the bipotentiality of these progenitors. Their high expression of alpha6 integrin and low expression of MUC1 suggests a basal position of these cells in the mammary epithelium in vivo. Serial passage in vitro of an enriched population of bipotent progenitors demonstrated that only myoepithelial-restricted progenitors could be readily generated under the culture conditions used. These results support a hierarchical branching model of HBEC progenitor differentiation from a primitive uncommitted cell to luminal- and myoepithelial-restricted progenitors.
View Publication
产品类型:
产品号#:
01700
01705
05601
05610
产品名:
ALDEFLUOR™工具
ALDEFLUOR™DEAB试剂
EpiCult™-B 人培养基
EpiCult™-B 小鼠培养基
文献
Son M-Y et al. (JAN 2017)
Stem cells and development 26 2 133--145
Biomarker Discovery by Modeling Behçet's Disease with Patient-Specific Human Induced Pluripotent Stem Cells.
Behçet's disease (BD) is a chronic inflammatory and multisystemic autoimmune disease of unknown etiology. Due to the lack of a specific test for BD,its diagnosis is very difficult and therapeutic options are limited. Induced pluripotent stem cell (iPSC) technology,which provides inaccessible disease-relevant cell types,opens a new era for disease treatment. In this study,we generated BD iPSCs from patient somatic cells and differentiated them into hematopoietic precursor cells (BD iPSC-HPCs) as BD model cells. Based on comparative transcriptome analysis using our BD model cells,we identified eight novel BD-specific genes,AGTR2,CA9,CD44,CXCL1,HTN3,IL-2,PTGER4,and TSLP,which were differentially expressed in BD patients compared with healthy controls or patients with other immune diseases. The use of CXCL1 as a BD biomarker was further validated at the protein level using both a BD iPSC-HPC-based assay system and BD patient serum samples. Furthermore,we show that our BD iPSC-HPC-based drug screening system is highly effective for testing CXCL1 BD biomarkers,as determined by monitoring the efficacy of existing anti-inflammatory drugs. Our results shed new light on the usefulness of patient-specific iPSC technology in the development of a benchmarking platform for disease-specific biomarkers,phenotype- or target-driven drug discovery,and patient-tailored therapies.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
O'Brien CM et al. (DEC 2016)
Stem cells (Dayton,Ohio)
New Monoclonal Antibodies to Defined Cell Surface Proteins on Human Pluripotent Stem Cells.
The study and application of human pluripotent stem cells (hPSCs) will be enhanced by the availability of well-characterised monoclonal antibodies (mAbs) detecting cell-surface epitopes. Here we report generation of seven new mAbs that detect cell surface proteins present on live and fixed human ES cells (hESCs) and human iPS cells (hiPSCs),confirming our previous prediction that these proteins were present on the cell surface of hPSCs. The mAbs all show a high correlation with POU5F1 (OCT4) expression and other hPSC surface markers (TRA-160 and SSEA-4) in hPSC cultures and detect rare OCT4 positive cells in differentiated cell cultures. These mAbs are immunoreactive to cell surface protein epitopes on both primed and naive state hPSCs,providing useful research tools to investigate the cellular mechanisms underlying human pluripotency and states of cellular reprogramming. In addition,we report that subsets of the seven new mAbs are also immunoreactive to human bone marrow-derived mesenchymal stem cells (MSCs),normal human breast subsets and both normal and tumorigenic colorectal cell populations. The mAbs reported here should accelerate the investigation of the nature of pluripotency,and enable development of robust cell separation and tracing technologies to enrich or deplete for hPSCs and other human stem and somatic cell types. This article is protected by copyright. All rights reserved.
View Publication
产品类型:
产品号#:
产品名:
文献
Diniz B et al. (JUL 2013)
Investigative Ophthalmology and Visual Science 54 7 5087--5096
Subretinal Implantation of Retinal Pigment Epithelial Cells Derived From Human Embryonic Stem Cells: Improved Survival When Implanted as a Monolayer
PURPOSE: To evaluate cell survival and tumorigenicity of human embryonic stem cell-derived retinal pigment epithelium (hESC-RPE) transplantation in immunocompromised nude rats. Cells were transplanted as a cell suspension (CS) or as a polarized monolayer plated on a parylene membrane (PM).backslashnbackslashnMETHODS: Sixty-nine rats (38 male,31 female) were surgically implanted with CS (n = 33) or PM (n = 36). Cohort subsets were killed at 1,6,and 12 months after surgery. Both ocular tissues and systemic organs (brain,liver,kidneys,spleen,heart,and lungs) were fixed in 4% paraformaldehyde,embedded in paraffin,and sectioned. Every fifth section was stained with hematoxylin and eosin and analyzed histologically. Adjacent sections were processed for immunohistochemical analysis (as needed) using the following antibodies: anti-RPE65 (RPE-specific marker),anti-TRA-1-85 (human cell marker),anti-Ki67 (proliferation marker),anti-CD68 (macrophage),and anti-cytokeratin (epithelial marker).backslashnbackslashnRESULTS: The implanted cells were immunopositive for the RPE65 and TRA-1-85. Cell survival (P = 0.006) and the presence of a monolayer (P textless 0.001) of hESC-RPE were significantly higher in eyes that received the PM. Gross morphological and histological analysis of the eye and the systemic organs after the surgery revealed no evidence of tumor or ectopic tissue formation in either group.backslashnbackslashnCONCLUSIONS: hESC-RPE can survive for at least 12 months in an immunocompromised animal model. Polarized monolayers of hESC-RPE show improved survival compared to cell suspensions. The lack of teratoma or any ectopic tissue formation in the implanted rats bodes well for similar results with respect to safety in human subjects.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Poon E et al. (JUN 2015)
Circulation. Cardiovascular genetics 8 3 427--436
Proteomic Analysis of Human Pluripotent Stem Cell-Derived, Fetal, and Adult Ventricular Cardiomyocytes Reveals Pathways Crucial for Cardiac Metabolism and Maturation
BACKGROUND Differentiation of pluripotent human embryonic stem cells (hESCs) to the cardiac lineage represents a potentially unlimited source of ventricular cardiomyocytes (VCMs),but hESC-VCMs are developmentally immature. Previous attempts to profile hESC-VCMs primarily relied on transcriptomic approaches,but the global proteome has not been examined. Furthermore,most hESC-CM studies focus on pathways important for cardiac differentiation,rather than regulatory mechanisms for CM maturation. We hypothesized that gene products and pathways crucial for maturation can be identified by comparing the proteomes of hESCs,hESC-derived VCMs,human fetal and human adult ventricular and atrial CMs. METHODS AND RESULTS Using two-dimensional-differential-in-gel electrophoresis,121 differentially expressed (textgreater1.5-fold; Ptextless0.05) proteins were detected. The data set implicated a role of the peroxisome proliferator-activated receptor $\$ in cardiac maturation. Consistently,WY-14643,a peroxisome proliferator-activated receptor $\$,increased fatty oxidative enzyme level,hyperpolarized mitochondrial membrane potential and induced a more organized morphology. Along this line,treatment with the thyroid hormone triiodothyronine increased the dynamic tension developed in engineered human ventricular cardiac microtissue by 3-fold,signifying their maturation. CONCLUSIONS We conclude that the peroxisome proliferator-activated receptor $\$ thyroid hormone pathways modulate the metabolism and maturation of hESC-VCMs and their engineered tissue constructs. These results may lead to mechanism-based methods for deriving mature chamber-specific CMs.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Asokan R et al. (JUL 2006)
Journal of immunology (Baltimore,Md. : 1950) 177 1 383--94
Characterization of human complement receptor type 2 (CR2/CD21) as a receptor for IFN-alpha: a potential role in systemic lupus erythematosus.
Human complement receptor type 2 (CR2/CD21) is a B lymphocyte membrane glycoprotein that plays a central role in the immune responses to foreign Ags as well as the development of autoimmunity to nuclear Ags in systemic lupus erythematosus. In addition to these three well-characterized ligands,C3d/iC3b,EBV-gp350,and CD23,a previous study has identified CR2 as a potential receptor for IFN-alpha. IFN-alpha,a multifunctional cytokine important in the innate immune system,has recently been proposed to play a major pathogenic role in the development of systemic lupus erythematosus in humans and mice. In this study,we have shown using surface plasmon resonance and ELISA approaches that CR2 will bind IFN-alpha in the same affinity range as the other three well-characterized ligands studied in parallel. In addition,we show that IFN-alpha interacts with short consensus repeat domains 1 and 2 in a region that serves as the ligand binding site for C3d/iC3b,EBV-gp350,and CD23. Finally,we show that treatment of purified human peripheral blood B cells with the inhibitory anti-CR2 mAb 171 diminishes the induction of IFN-alpha-responsive genes. Thus,IFN-alpha represents a fourth class of extracellular ligands for CR2 and interacts with the same domain as the other three ligands. Defining the role of CR2 as compared with the well-characterized type 1 IFN-alpha receptor 1 and 2 in mediating innate immune and autoimmune roles of this cytokine should provide additional insights into the biologic roles of this interaction.
View Publication
产品类型:
产品号#:
15024
15064
产品名:
RosetteSep™人B细胞富集抗体混合物
RosetteSep™人B细胞富集抗体混合物
文献
Nguyen HX et al. (AUG 2014)
Journal of Comparative Neurology 522 12 2767--2783
Induction of early neural precursors and derivation of tripotent neural stem cells from human pluripotent stem cells under xeno-free conditions
Human embryonic stem cells (hESC) and induced pluripotent stem cells (hiPSC) can differentiate into many cell types and are important for regenerative medicine; however,further work is needed to reliably differentiate hESC and hiPSC into neural-restricted multipotent derivatives or specialized cell types under conditions that are free from animal products. Toward this goal,we tested the transition of hESC and hiPSC lines onto xeno-free (XF) / feeder-free conditions and evaluated XF substrate preference,pluripotency,and karyotype. Critically,XF transitioned H9 hESC,Shef4 hESC,and iPS6-9 retained pluripotency (Oct-4 and NANOG),proliferation (MKI67 and PCNA),and normal karyotype. Subsequently,XF transitioned hESC and hiPSC were induced with epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF) to generate neuralized spheres containing primitive neural precursors,which could differentiate into astrocytes and neurons,but not oligoprogenitors. Further neuralization of spheres via LIF supplementation and attachment selection on CELLstart substrate generated adherent human neural stem cells (hNSC) with normal karyotype and high proliferation potential under XF conditions. Interestingly,adherent hNSC derived from H9,Shef4,and iPS6-9 differentiated into significant numbers of O4+ oligoprogenitors (∼20-30%) with robust proliferation; however,very few GalC+ cells were observed (∼2-4%),indicative of early oligodendrocytic lineage commitment. Overall,these data demonstrate the transition of multiple hESC and hiPSC lines onto XF substrate and media conditions,and a reproducible neuralization method that generated neural derivatives with multipotent cell fate potential and normal karyotype.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Wang H et al. (JAN 2012)
Journal of translational medicine 10 1 167
Oncolytic vaccinia virus GLV-1h68 strain shows enhanced replication in human breast cancer stem-like cells in comparison to breast cancer cells.
BACKGROUND: Recent data suggest that cancer stem cells (CSCs) play an important role in cancer,as these cells possess enhanced tumor-forming capabilities and are responsible for relapses after apparently curative therapies have been undertaken. Hence,novel cancer therapies will be needed to test for both tumor regression and CSC targeting. The use of oncolytic vaccinia virus (VACV) represents an attractive anti-tumor approach and is currently under evaluation in clinical trials. The purpose of this study was to demonstrate whether VACV does kill CSCs that are resistant to irradiation and chemotherapy. METHODS: Cancer stem-like cells were identified and separated from the human breast cancer cell line GI-101A by virtue of increased aldehyde dehydrogenase 1 (ALDH1) activity as assessed by the ALDEFLUOR assay and cancer stem cell-like features such as chemo-resistance,irradiation-resistance and tumor-initiating were confirmed in cell culture and in animal models. VACV treatments were applied to both ALDEFLUOR-positive cells in cell culture and in xenograft tumors derived from these cells. Moreover,we identified and isolated CD44(+)CD24(+)ESA(+) cells from GI-101A upon an epithelial-mesenchymal transition (EMT). These cells were similarly characterized both in cell culture and in animal models. RESULTS: We demonstrated for the first time that the oncolytic VACV GLV-1h68 strain replicated more efficiently in cells with higher ALDH1 activity that possessed stem cell-like features than in cells with lower ALDH1 activity. GLV-1h68 selectively colonized and eventually eradicated xenograft tumors originating from cells with higher ALDH1 activity. Furthermore,GLV-1h68 also showed preferential replication in CD44(+)CD24(+)ESA(+) cells derived from GI-101A upon an EMT induction as well as in xenograft tumors originating from these cells that were more tumorigenic than CD44(+)CD24(-)ESA(+) cells. CONCLUSIONS: Taken together,our findings indicate that GLV-1h68 efficiently replicates and kills cancer stem-like cells. Thus,GLV-1h68 may become a promising agent for eradicating both primary and metastatic tumors,especially tumors harboring cancer stem-like cells that are resistant to chemo and/or radiotherapy and may be responsible for recurrence of tumors.
View Publication
产品类型:
产品号#:
01700
01705
05620
产品名:
ALDEFLUOR™工具
ALDEFLUOR™DEAB试剂
MammoCult™ 人源培养基套装
文献
Buono M et al. (AUG 2010)
The Journal of experimental medicine 207 8 1647--60
Self-renewal and differentiation of hematopoietic stem cells (HSCs) are balanced by the concerted activities of the fibroblast growth factor (FGF),Wnt,and Notch pathways,which are tuned by enzyme-mediated remodeling of heparan sulfate proteoglycans (HSPGs). Sulfatase modifying factor 1 (SUMF1) activates the Sulf1 and Sulf2 sulfatases that remodel the HSPGs,and is mutated in patients with multiple sulfatase deficiency. Here,we show that the FGF signaling pathway is constitutively activated in Sumf1(-/-) HSCs and hematopoietic stem progenitor cells (HSPCs). These cells show increased p-extracellular signal-regulated kinase levels,which in turn promote beta-catenin accumulation. Constitutive activation of FGF signaling results in a block in erythroid differentiation at the chromatophilic erythroblast stage,and of B lymphocyte differentiation at the pro-B cell stage. A reduction in mature myeloid cells and an aberrant development of T lymphocytes are also seen. These defects are rescued in vivo by blocking the FGF pathway in Sumf1(-/-) mice. Transplantation of Sumf1(-/-) HSPCs into wild-type mice reconstituted the phenotype of the donors,suggesting a cell autonomous defect. These data indicate that Sumf1 controls HSPC differentiation and hematopoietic lineage development through FGF and Wnt signaling.
View Publication