Smith KS et al. (NOV 2002)
Molecular and cellular biology 22 21 7678--87
Transformation of bone marrow B-cell progenitors by E2a-Hlf requires coexpression of Bcl-2.
The chimeric transcription factor E2a-Hlf is an oncoprotein associated with a subset of acute lymphoblastic leukemias of early B-lineage derivation. We employed a retroviral transduction-transplantation approach to evaluate the oncogenic effects of E2a-Hlf on murine B-cell progenitors harvested from adult bone marrow. Expression of E2a-Hlf induced short-lived clusters of primary hematopoietic cells but no long-term growth on preformed bone marrow stromal cell layers comprised of the AC6.21 cell line. Coexpression with Bcl-2,however,resulted in the sustained self-renewal of early preB-I cells that required stromal and interleukin-7 (IL-7) support for growth in vitro. Immortalized cells were unable to induce leukemias after transplantation into nonirradiated syngeneic hosts,unlike the leukemic properties and cytokine independence of preB-I cells transformed by p190(Bcr-Abl) under identical in vitro conditions. However,bone marrow cells expressing E2a-Hlf in combination with Bcl-2,but not E2a-Hlf alone,induced leukemias in irradiated recipients with long latencies,demonstrating both a requirement for suppression of apoptosis and the need for further secondary mutations in leukemia pathogenesis. Coexpression of IL-7 substituted for Bcl-2 to induce the in vitro growth of pre-B cells expressing E2a-Hlf,but leukemic conversion required additional abrogation of undefined stromal requirements and was associated with alterations in the Arf/Mdm2/p53 pathway. Thus,E2a-Hlf enhances the self-renewal of bone marrow B-cell progenitors without inciting a p53 tumor surveillance response or abrogating stromal and cytokine requirements for growth,which are nevertheless abrogated during progression to a leukemogenic phenotype.
View Publication
产品类型:
产品号#:
03134
产品名:
MethoCult™M3134
Hideshima T et al. (FEB 2003)
Blood 101 4 1530--4
Molecular mechanisms mediating antimyeloma activity of proteasome inhibitor PS-341.
We have recently shown that proteasome inhibitor PS-341 induces apoptosis in drug-resistant multiple myeloma (MM) cells,inhibits binding of MM cells in the bone marrow microenvironment,and inhibits cytokines mediating MM cell growth,survival,drug resistance,and migration in vitro. PS-341 also inhibits human MM cell growth and prolongs survival in a SCID mouse model. Importantly,PS-341 has achieved remarkable clinical responses in patients with refractory relapsed MM. We here demonstrate molecular mechanisms whereby PS-341 mediates anti-MM activity by inducing p53 and MDM2 protein expression; inducing the phosphorylation (Ser15) of p53 protein; activating c-Jun NH(2)-terminal kinase (JNK),caspase-8,and caspase-3; and cleaving the DNA protein kinase catalytic subunit,ATM,and MDM2. Inhibition of JNK activity abrogates PS-341-induced MM cell death. These studies identify molecular targets of PS-341 and provide the rationale for the development of second-generation,more targeted therapies.
View Publication
产品类型:
产品号#:
15129
15169
产品名:
RosetteSep™人多发性骨髓瘤细胞富集抗体混合物
RosetteSep™人多发性骨髓瘤细胞富集抗体混合物
Marcato P et al. (MAY 2011)
Cell cycle (Georgetown,Tex.) 10 9 1378--84
Aldehyde dehydrogenase: its role as a cancer stem cell marker comes down to the specific isoform.
Recent evidence suggests that enhanced aldehyde dehydrogenase (ALDH) activity is a hallmark of cancer stem cells (CSC) measurable by the aldefluor assay. ALDH1A1,one of 19 ALDH isoforms expressed in humans,was generally believed to be responsible for the ALDH activity of CSCs. More recently,experiments with murine hematopoietic stem cells,murine progenitor pancreatic cells,and human breast CSCs indicate that other ALDH isoforms,particularly ALDH1A3,significantly contribute to aldefluor positivity,which may be tissue and cancer specific. Therefore,potential prognostic application involving the use of CSC prevalence in tumor tissue to predict patient outcome requires the identification and quantification of specific ALDH isoforms. Herein we review the suggested roles of ALDH in CSC biology and the immunohistological studies testing the potential application of ALDH isoforms as novel cancer prognostic indicators.
View Publication
产品类型:
产品号#:
01700
01705
产品名:
ALDEFLUOR™ 试剂盒
ALDEFLUOR™ DEAB试剂
Chang W-W et al. (MAR 2013)
Head & neck 35 3 413--9
Quercetin in elimination of tumor initiating stem-like and mesenchymal transformation property in head and neck cancer.
BACKGROUND: Previously,we enriched a subpopulation of head and neck cancer-derived tumor initiating cells (HNC-TICs) presented high tumorigenic,chemo-radioresistant,and coupled with epithelial-mesenchymal transition (EMT) properties. The purpose of this study was to investigate the therapeutic effect and molecular mechanisms of quercetin on HNC-TICs. METHOD: ALDH1 activity of head and neck cancer cells with quercetin treatment was assessed by the Aldefluor assay flow cytometry analysis. Self-renewal,invasiveness,and EMT capability of HNC-TICs with different doses of quercetin was presented. RESULTS: We first observed that the treatment of quercetin significantly downregulated the ALDH1 activity of head and neck cancer cells in a dose-dependent manner (p textless .05). Moreover,quercetin reduced self-renewal property and stemness signatures expression in head and neck cancer-derived sphere cells. The migration ability of head and neck cancer-derived sphere cells was lessened under quercetin treatment partially due to the decreased productions of Twist,N-cadherin,and vimentin. CONCLUSION: Quercetin suppressing HNC-TICs characteristics may therefore be valuable therapeutics clinically in combination with standard treatment modalities.
View Publication
产品类型:
产品号#:
01700
01705
产品名:
ALDEFLUOR™ 试剂盒
ALDEFLUOR™ DEAB试剂
Y. Zhang et al. ( 2015)
The Journal of Immunology 194 5937-5947
Genetic Vaccines To Potentiate the Effective CD103+ Dendritic Cell-Mediated Cross-Priming of Antitumor Immunity
The development of effective cancer vaccines remains an urgent,but as yet unmet,clinical need. This deficiency is in part due to an incomplete understanding of how to best invoke dendritic cells (DC) that are crucial for the induction of tumor-specific CD8(+) T cells capable of mediating durable protective immunity. In this regard,elevated expression of the transcription factor X box-binding protein 1 (XBP1) in DC appears to play a decisive role in promoting the ability of DC to cross-present Ags to CD8(+) T cells in the therapeutic setting. Delivery of DNA vaccines encoding XBP1 and tumor Ag to skin DC resulted in increased IFN-? production by plasmacytoid DC (pDC) from skin/tumor draining lymph nodes and the cross-priming of Ag-specific CD8(+) T cell responses associated with therapeutic benefit. Antitumor protection was dependent on cross-presenting Batf3(+) DC,pDC,and CD8(+) T cells. CD103(+) DC from the skin/tumor draining lymph nodes of the immunized mice appeared responsible for activation of Ag-specific naive CD8(+) T cells,but were dependent on pDC for optimal effectiveness. Similarly,human XBP1 improved the capacity of human blood- and skin-derived DC to activate human T cells. These data support an important intrinsic role for XBP1 in DC for effective cross-priming and orchestration of Batf3(+) DC-pDC interactions,thereby enabling effective vaccine induction of protective antitumor immunity.
View Publication