Perez LE et al. (MAR 2010)
European journal of haematology 84 3 212--22
Bortezomib restores stroma-mediated APO2L/TRAIL apoptosis resistance in multiple myeloma.
OBJECTIVES: Hematopoietic stroma promotes resistance to immune control by APO2L/TRAIL in multiple myeloma (MM) cells in part by increasing synthesis of the anti-apoptotic protein c-FLIP. Here,we tested whether bortezomib can reverse the APO2L/TRAIL environmental mediated-immune resistance (EM-IR). MATERIAL AND METHODS: MM cell lines (RPMI 8226 and U266) and CD138+ patient's MM cells were directly adhered to HS5 stroma exposed to HS5 or bone marrow stroma of patients with MM released soluble factors in a transwell system. Cells were treated with either APO2L/TRAIL (10 ng/mL),bortezomib (10 nm) or both. RESULTS: Pretreatment with bortezomib effectively overcomes APO2L/TRAIL apoptosis resistance in myeloma cell lines and in CD138+ cells while directly adhered or in transwell assay. Bortezomib was not cytotoxic to HS5 stroma cells and only altered monocyte chemotactic protein-2-3 and IL-10 levels in the stroma-myeloma milieu. Factors released by HS5 stroma increased expression of c-FLIP,induced STAT-3 and ERK phosphorylation and reduced DR4 receptor expression in MM cells. HS5 stroma-released factor(s) induced NF-kappaB activation after 20 h exposure in association with an enhanced c-FLIP transcription. Bortezomib effectively reduced c-FLIP protein expression without affecting other proteins. Bortezomib also increased DR4 and DR5 expression in the presence of stroma. CONCLUSIONS: These findings provide the rationale to combine bortezomib and APO2L/TRAIL to disrupt the influence of the stroma microenvironment on MM cells.
View Publication
产品类型:
产品号#:
15129
15169
产品名:
RosetteSep™人多发性骨髓瘤细胞富集抗体混合物
RosetteSep™人多发性骨髓瘤细胞富集抗体混合物
Chen Y-X et al. (JAN 2006)
Proceedings of the National Academy of Sciences of the United States of America 103 4 1018--23
The tumor suppressor menin regulates hematopoiesis and myeloid transformation by influencing Hox gene expression.
Menin is the product of the tumor suppressor gene Men1 that is mutated in the inherited tumor syndrome multiple endocrine neoplasia type 1 (MEN1). Menin has been shown to interact with SET-1 domain-containing histone 3 lysine 4 (H3K4) methyltransferases including mixed lineage leukemia proteins to regulate homeobox (Hox) gene expression in vitro. Using conditional Men1 knockout mice,we have investigated the requirement for menin in hematopoiesis and myeloid transformation. Men1 excision causes reduction of Hoxa9 expression,colony formation by hematopoietic progenitors,and the peripheral white blood cell count. Menin directly activates Hoxa9 expression,at least in part,by binding to the Hoxa9 locus,facilitating methylation of H3K4,and recruiting the methylated H3K4 binding protein chd1 to the locus. Consistent with signaling downstream of menin,ectopic expression of both Hoxa9 and Meis1 rescues colony formation defects in Men1-excised bone marrow. Moreover,Men1 excision also suppresses proliferation of leukemogenic mixed lineage leukemia-AF9 fusion-protein-transformed myeloid cells and Hoxa9 expression. These studies uncover an important role for menin in both normal hematopoiesis and myeloid transformation and provide a mechanistic understanding of menin's function in these processes that may be used for therapy.
View Publication
产品类型:
产品号#:
03534
产品名:
MethoCult™GF M3534
Jenkins RB et al. (OCT 2006)
Cancer research 66 20 9852--61
A t(1;19)(q10;p10) mediates the combined deletions of 1p and 19q and predicts a better prognosis of patients with oligodendroglioma.
Combined deletion of chromosomes 1p and 19q is associated with improved prognosis and responsiveness to therapy in patients with anaplastic oligodendroglioma. The deletions usually involve whole chromosome arms,suggesting a t(1;19)(q10;p10). Using stem cell medium,we cultured a few tumors. Paraffin-embedded tissue was obtained from 21 Mayo Clinic patients and 98 patients enrolled in 2 North Central Cancer Treatment Group (NCCTG) low-grade glioma trials. Interphase fusion of CEP1 and 19p12 probes detected the t(1;19). 1p/19q deletions were evaluated by fluorescence in situ hybridization. Upon culture,one oligodendroglioma contained an unbalanced 45,XX,t(1;19)(q10;p10). CEP1/19p12 fusion was observed in all metaphases and 74% of interphase nuclei. Among Mayo Clinic oligodendrogliomas,the prevalence of fusion was 81%. Among NCCTG patients,CEP1/19p12 fusion prevalence was 55%,47%,and 0% among the oligodendrogliomas,mixed oligoastrocytomas,and astrocytomas,respectively. Ninety-one percent of NCCTG gliomas with 1p/19q deletion and 12% without 1p/19q deletion had CEP1/19p12 fusion (P textless 0.001,chi(2) test). The median overall survival (OS) for all patients was 8.1 years without fusion and 11.9 years with fusion (P = 0.003). The median OS for patients with low-grade oligodendroglioma was 9.1 years without fusion and 13.0 years with fusion (P = 0.01). Similar significant median OS differences were observed for patients with combined 1p/19q deletions. The absence of alterations was associated with a significantly shorter OS for patients who received higher doses of radiotherapy. Our results strongly suggest that a t(1;19)(q10;p10) mediates the combined 1p/19q deletion in human gliomas. Like combined 1p/19q deletion,the 1;19 translocation is associated with superior OS and progression-free survival in low-grade glioma patients.
View Publication
产品类型:
产品号#:
05751
产品名:
NeuroCult™ NS-A 扩增试剂盒(人)
Isakovic A et al. ( 2007)
Cellular and Molecular Life Sciences 64 10 1290--1302
Dual antiglioma action of metformin: cell cycle arrest and mitochondria-dependent apoptosis
The present study reports for the first time a dual antiglioma effect of the well-known antidiabetic drug metformin. In low-density cultures of the C6 rat glioma cell line,metformin blocked the cell cycle progression in G(0)/G(1) phase without inducing significant cell death. In confluent C6 cultures,on the other hand,metformin caused massive induction of caspase-dependent apoptosis associated with c-Jun N-terminal kinase (JNK) activation,mitochondrial depolarization and oxidative stress. Metformin-triggered apoptosis was completely prevented by agents that block mitochondrial permeability transition (cyclosporin A) and oxygen radical production (N-acetylcisteine),while the inhibitors of JNK activation (SP600125) or glycolysis (sodium fluoride,iodoacetate) provided partial protection. The antiglioma effect of metformin was reduced by compound C,an inhibitor of AMP-activated protein kinase (AMPK),and was mimicked by the AMPK agonist AICAR. Similar effects were observed in the human glioma cell line U251,while rat primary astrocytes were completely resistant to the antiproliferative and proapoptotic action of metformin.
View Publication
产品类型:
产品号#:
73252
73254
产品名:
Metformin (Hydrochloride)
二甲双胍 (Hydrochloride)
Riccioni R et al. (OCT 2007)
British journal of haematology 139 2 194--205
M4 and M5 acute myeloid leukaemias display a high sensitivity to Bortezomib-mediated apoptosis.
The present study explored the sensitivity of leukaemic blasts derived from 30 acute myeloid leukaemia (AML) patients to Bortezomib. Bortezomib induced apoptosis of primary AML blasts: 18/30 AMLs were clearly sensitive to the proapoptotic effects of Bortezomib,while the remaining cases were moderately sensitive to this molecule. The addition of tumour necrosis factor-related-apoptosis-inducing ligand,when used alone,did not induce apoptosis of AML blasts and further potentiated the cytotoxic effects of Bortezomib. The majority of AMLs sensitive to Bortezomib showed immunophenotypic features of the M4 and M5 French-American-British classification subtypes and displayed myelomonocytic features. All AMLs with mutated FLT3 were in the Bortezomib-sensitive group. Biochemical studies showed that: (i) Bortezomib activated caspase-8 and caspase-3 and decreased cellular FLICE [Fas-associated death domain (FADD)-like interleukin-1beta-converting enzyme]-inhibitory protein (c-FLIP) levels in AML blasts; (ii) high c-FLIP levels in AML blasts were associated with low Bortezomib sensitivity. Finally,analysis of the effects of Bortezomib on leukaemic cells displaying high aldehyde dehydrogenase activity suggested that this drug induced in vitro killing of leukaemic stem cells. The findings of the present study,further support the development of Bortezomib as an anti-leukaemic drug and provide simple tools to predict the sensitivity of AML cells to this drug.
View Publication
产品类型:
产品号#:
01700
01705
01701
01702
产品名:
ALDEFLUOR™ 试剂盒
ALDEFLUOR™ DEAB试剂
ALDEFLUOR™测定缓冲液
Boissier S et al. (JUN 2000)
Cancer research 60 11 2949--54
Bisphosphonates inhibit breast and prostate carcinoma cell invasion, an early event in the formation of bone metastases.
The molecular mechanisms by which tumor cells metastasize to bone are likely to involve invasion,cell adhesion to bone,and the release of soluble mediators from tumor cells that stimulate osteoclast-mediated bone resorption. Bisphosphonates (BPs) are powerful inhibitors of the osteoclast activity and are,therefore,used in the treatment of patients with osteolytic metastases. However,an added beneficial effect of BPs may be direct antitumor activity. We previously reported that BPs inhibit breast and prostate carcinoma cell adhesion to bone (Boissier et al.,Cancer Res.,57: 3890-3894,1997). Here,we provided evidence that BP pretreatment of breast and prostate carcinoma cells inhibited tumor cell invasion in a dose-dependent manner. The order of potency for four BPs in inhibiting tumor cell invasion was: zoledronate textgreater ibandronate textgreater NE-10244 (active pyridinium analogue of risedronate) textgreater clodronate. In addition,NE-58051 (the inactive pyridylpropylidene analogue of risedronate) had no inhibitory effect,whereas NE-10790 (a phosphonocarboxylate analogue of risedronate in which one of the phosphonate groups is substituted by a carboxyl group) inhibited tumor cell invasion to an extent similar to that observed with NE-10244,indicating that the inhibitory activity of BPs on tumor cells involved the R2 chain of the molecule. BPs did not induce apoptosis in tumor cells,nor did they inhibit tumor cell migration at concentrations that did inhibit tumor cell invasion. However,although BPs did not interfere with the production of matrix metalloproteinases (MMPs) by tumor cells,they inhibited their proteolytic activity. The inhibitory effect of BPs on MMP activity was completely reversed in the presence of an excess of zinc. In addition,NE-10790 did not inhibit MMP activity,suggesting that phosphonate groups of BPs are responsible for the chelation of zinc and the subsequent inhibition of MMP activity. In conclusion,our results provide evidence for a direct cellular effect of BPs in preventing tumor cell invasion and an inhibitory effect of BPs on the proteolytic activity of MMPs through zinc chelation. These results suggest,therefore,that BPs may be useful agents for the prophylactic treatment of patients with cancers that are known to preferentially metastasize to bone.
View Publication
产品类型:
产品号#:
73572
产品名:
Zoledronic Acid (Hydrate)
Eksteen B et al. (DEC 2004)
The Journal of experimental medicine 200 11 1511--7
Hepatic endothelial CCL25 mediates the recruitment of CCR9+ gut-homing lymphocytes to the liver in primary sclerosing cholangitis.
Primary sclerosing cholangitis (PSC),a chronic inflammatory liver disease characterized by progressive bile duct destruction,develops as an extra-intestinal complication of inflammatory bowel disease (IBD) (Chapman,R.W. 1991. Gut. 32:1433-1435). However,the liver and bowel inflammation are rarely concomitant,and PSC can develop in patients whose colons have been removed previously. We hypothesized that PSC is mediated by long-lived memory T cells originally activated in the gut,but able to mediate extra-intestinal inflammation in the absence of active IBD (Grant,A.J.,P.F. Lalor,M. Salmi,S. Jalkanen,and D.H. Adams. 2002. Lancet. 359:150-157). In support of this,we show that liver-infiltrating lymphocytes in PSC include mucosal T cells recruited to the liver by aberrant expression of the gut-specific chemokine CCL25 that activates alpha4beta7 binding to mucosal addressin cell adhesion molecule 1 on the hepatic endothelium. This is the first demonstration in humans that T cells activated in the gut can be recruited to an extra-intestinal site of disease and provides a paradigm to explain the pathogenesis of extra-intestinal complications of IBD.
View Publication
产品类型:
产品号#:
18552
18552RF
18551
18551RF
18561
产品名:
Isham CR et al. (MAR 2007)
Blood 109 6 2579--88
Chaetocin: a promising new antimyeloma agent with in vitro and in vivo activity mediated via imposition of oxidative stress.
Chaetocin,a thiodioxopiperazine natural product previously unreported to have anticancer effects,was found to have potent antimyeloma activity in IL-6-dependent and -independent myeloma cell lines in freshly collected sorted and unsorted patient CD138(+) myeloma cells and in vivo. Chaetocin largely spares matched normal CD138(-) patient bone marrow leukocytes,normal B cells,and neoplastic B-CLL (chronic lymphocytic leukemia) cells,indicating a high degree of selectivity even in closely lineage-related B cells. Furthermore,chaetocin displays superior ex vivo antimyeloma activity and selectivity than doxorubicin and dexamethasone,and dexamethasone- or doxorubicin-resistant myeloma cell lines are largely non-cross-resistant to chaetocin. Mechanistically,chaetocin is dramatically accumulated in cancer cells via a process inhibited by glutathione and requiring intact/unreduced disulfides for uptake. Once inside the cell,its anticancer activity appears mediated primarily through the imposition of oxidative stress and consequent apoptosis induction. Moreover,the selective antimyeloma effects of chaetocin appear not to reflect differential intracellular accumulation of chaetocin but,instead,heightened sensitivity of myeloma cells to the cytotoxic effects of imposed oxidative stress. Considered collectively,chaetocin appears to represent a promising agent for further study as a potential antimyeloma therapeutic.
View Publication
产品类型:
产品号#:
18054
18054RF
21000
20119
20155
19154
19154RF
73592
产品名:
RoboSep™- S
RoboSep™ 吸头组件抛光剂
RoboSep™分选试管套装(9个塑料管+吸头保护器)
毛壳素
Quelen C et al. (MAY 2011)
Blood 117 21 5719--22
Identification of a transforming MYB-GATA1 fusion gene in acute basophilic leukemia: a new entity in male infants.
Acute basophilic leukemia (ABL) is a rare subtype of acute leukemia with clinical features and symptoms related to hyperhistaminemia because of excessive growth of basophils. No known recurrent cytogenetic abnormality is associated with this leukemia. Rare cases of t(X;6)(p11;q23) translocation have been described but these were sporadic. We report here 4 cases of ABL with a t(X;6)(p11;q23) translocation occurring in male infants. Because of its location on chromosome 6q23,MYB was a good candidate gene. Our molecular investigations,based on fluorescence in situ hybridization and rapid amplification of cDNA ends,revealed that the translocation generated a MYB-GATA1 fusion gene. Expression of MYB-GATA1 in mouse lineage-negative cells committed them to the granulocyte lineage and blocked at an early stage of differentiation. Taken together,these results establish,for the first time,a link between a recurrent chromosomal translocation and the development of this particular subtype of infant leukemia.
View Publication
产品类型:
产品号#:
03434
03444
产品名:
MethoCult™GF M3434
MethoCult™GF M3434
Koivunen P et al. (MAR 2012)
Nature 483 7390 484--8
Transformation by the (R)-enantiomer of 2-hydroxyglutarate linked to EGLN activation.
The identification of succinate dehydrogenase (SDH),fumarate hydratase (FH) and isocitrate dehydrogenase (IDH) mutations in human cancers has rekindled the idea that altered cellular metabolism can transform cells. Inactivating SDH and FH mutations cause the accumulation of succinate and fumarate,respectively,which can inhibit 2-oxoglutarate (2-OG)-dependent enzymes,including the EGLN prolyl 4-hydroxylases that mark the hypoxia inducible factor (HIF) transcription factor for polyubiquitylation and proteasomal degradation. Inappropriate HIF activation is suspected of contributing to the pathogenesis of SDH-defective and FH-defective tumours but can suppress tumour growth in some other contexts. IDH1 and IDH2,which catalyse the interconversion of isocitrate and 2-OG,are frequently mutated in human brain tumours and leukaemias. The resulting mutants have the neomorphic ability to convert 2-OG to the (R)-enantiomer of 2-hydroxyglutarate ((R)-2HG). Here we show that (R)-2HG,but not (S)-2HG,stimulates EGLN activity,leading to diminished HIF levels,which enhances the proliferation and soft agar growth of human astrocytes. These findings define an enantiomer-specific mechanism by which the (R)-2HG that accumulates in IDH mutant brain tumours promotes transformation and provide a justification for exploring EGLN inhibition as a potential treatment strategy.
View Publication
产品类型:
产品号#:
05751
产品名:
NeuroCult™ NS-A 扩增试剂盒(人)
Dowling RJO et al. ( 2012)
Journal of molecular endocrinology 48 3 R31--43
Metformin in cancer: translational challenges.
The anti-diabetic drug metformin is rapidly emerging as a potential anti-cancer agent. Metformin,effective in treating type 2 diabetes and the insulin resistance syndromes,improves insulin resistance by reducing hepatic gluconeogenesis and by enhancing glucose uptake by skeletal muscle. Epidemiological studies have consistently associated metformin use with decreased cancer incidence and cancer-related mortality. Furthermore,numerous preclinical and clinical studies have demonstrated anti-cancer effects of metformin,leading to an explosion of interest in evaluating this agent in human cancer. The effects of metformin on circulating insulin levels indicate a potential efficacy towards cancers associated with hyperinsulinaemia; however,metformin may also directly inhibit tumour growth. In this review,we describe the mechanism of action of metformin and summarise the epidemiological,clinical and preclinical evidence supporting a role for metformin in the treatment of cancer. In addition,the challenges associated with translating preclinical results into therapeutic benefit in the clinical setting will be discussed.
View Publication
产品类型:
产品号#:
73252
73254
产品名:
Metformin (Hydrochloride)
二甲双胍 (Hydrochloride)
Serra RW et al. (MAR 2014)
eLife 3 3 e02313
A KRAS-directed transcriptional silencing pathway that mediates the CpG island methylator phenotype.
Approximately 70% of KRAS-positive colorectal cancers (CRCs) have a CpG island methylator phenotype (CIMP) characterized by aberrant DNA hypermethylation and transcriptional silencing of many genes. The factors involved in,and the mechanistic basis of,CIMP is not understood. Among the CIMP genes are the tumor suppressors p14(ARF),p15(INK4B),and p16(INK4A),encoded by the INK4-ARF locus. In this study,we perform an RNA interference screen and identify ZNF304,a zinc-finger DNA-binding protein,as the pivotal factor required for INK4-ARF silencing and CIMP in CRCs containing activated KRAS. In KRAS-positive human CRC cell lines and tumors,ZNF304 is bound at the promoters of INK4-ARF and other CIMP genes. Promoter-bound ZNF304 recruits a corepressor complex that includes the DNA methyltransferase DNMT1,resulting in DNA hypermethylation and transcriptional silencing. KRAS promotes silencing through upregulation of ZNF304,which drives DNA binding. Finally,we show that ZNF304 also directs transcriptional silencing of INK4-ARF in human embryonic stem cells. DOI: http://dx.doi.org/10.7554/eLife.02313.001.
View Publication