Charafe-Jauffret E et al. (FEB 2009)
Cancer research 69 4 1302--13
Breast cancer cell lines contain functional cancer stem cells with metastatic capacity and a distinct molecular signature.
Tumors may be initiated and maintained by a cellular subcomponent that displays stem cell properties. We have used the expression of aldehyde dehydrogenase as assessed by the ALDEFLUOR assay to isolate and characterize cancer stem cell (CSC) populations in 33 cell lines derived from normal and malignant mammary tissue. Twenty-three of the 33 cell lines contained an ALDEFLUOR-positive population that displayed stem cell properties in vitro and in NOD/SCID xenografts. Gene expression profiling identified a 413-gene CSC profile that included genes known to play a role in stem cell function,as well as genes such as CXCR1/IL-8RA not previously known to play such a role. Recombinant interleukin-8 (IL-8) increased mammosphere formation and the ALDEFLUOR-positive population in breast cancer cell lines. Finally,we show that ALDEFLUOR-positive cells are responsible for mediating metastasis. These studies confirm the hierarchical organization of immortalized cell lines,establish techniques that can facilitate the characterization of regulatory pathways of CSCs,and identify potential stem cell markers and therapeutic targets.
View Publication
产品类型:
产品号#:
01700
01705
产品名:
ALDEFLUOR™ 试剂盒
ALDEFLUOR™ DEAB试剂
Zetterblad J et al. (JAN 2010)
BMC genomics 11 108
Genomics based analysis of interactions between developing B-lymphocytes and stromal cells reveal complex interactions and two-way communication.
BACKGROUND: The use of functional genomics has largely increased our understanding of cell biology and promises to help the development of systems biology needed to understand the complex order of events that regulates cellular differentiation in vivo. One model system clearly dependent on the integration of extra and intra cellular signals is the development of B-lymphocytes from hematopoietic stem cells in the bone marrow. This developmental pathway involves several defined differentiation stages associated with specific expression of genes including surface markers that can be used for the prospective isolation of the progenitor cells directly from the bone marrow to allow for ex vivo gene expression analysis. The developmental process can be simulated in vitro making it possible to dissect information about cell/cell communication as well as to address the relevance of communication pathways in a rather direct manner. Thus we believe that B-lymphocyte development represents a useful model system to take the first steps towards systems biology investigations in the bone marrow. RESULTS: In order to identify extra cellular signals that promote B lymphocyte development we created a database with approximately 400 receptor ligand pairs and software matching gene expression data from two cell populations to obtain information about possible communication pathways. Using this database and gene expression data from NIH3T3 cells (unable to support B cell development),OP-9 cells (strongly supportive of B cell development),pro-B and pre-B cells as well as mature peripheral B-lineage cells,we were able to identify a set of potential stage and stromal cell restricted communication pathways. Functional analysis of some of these potential ways of communication allowed us to identify BMP-4 as a potent stimulator of B-cell development in vitro. Further,the analysis suggested that there existed possibilities for progenitor B cells to send signals to the stroma. The functional consequences of this were investigated by co-culture experiments revealing that the co-incubation of stromal cells with B cell progenitors altered both the morphology and the gene expression pattern in the stromal cells. CONCLUSIONS: We believe that this gene expression data analysis method allows for the identification of functionally relevant interactions and therefore could be applied to other data sets to unravel novel communication pathways.
View Publication
产品类型:
产品号#:
产品名:
Yang X et al. (NOV 2010)
Cancer research 70 22 9463--72
Double-negative feedback loop between reprogramming factor LIN28 and microRNA let-7 regulates aldehyde dehydrogenase 1-positive cancer stem cells.
A relatively rare aldehyde dehydrogenase 1 (ALDH1)-positive stem cell-like" subpopulation of tumor cells has the unique ability to initiate and perpetuate tumor growth; moreover�
View Publication
产品类型:
产品号#:
01700
01705
产品名:
ALDEFLUOR™ 试剂盒
ALDEFLUOR™ DEAB试剂
Chen Y-W et al. (NOV 2010)
Molecular cancer therapeutics 9 11 2879--92
Cucurbitacin I suppressed stem-like property and enhanced radiation-induced apoptosis in head and neck squamous carcinoma--derived CD44(+)ALDH1(+) cells.
Head and neck squamous cell carcinoma (HNSCC) is a prevalent cancer worldwide. Signal transducers and activators of transcription 3 (STAT3) signaling is reported to promote tumor malignancy and recurrence in HNSCC. Cucurbitacins,triterpenoid derivatives,are strong STAT3 inhibitors with anticancer properties. Recent studies have shown aldehyde dehydrogenase 1 (ALDH1) to be a marker of cancer stem cells (CSC) in HNSCC. The aim of this study was to investigate the therapeutic effect of cucurbitacin I in HNSCC-derived CSCs. Using immunohistochemical analysis,we firstly showed that CD44,ALDH1,and phosphorylated STAT3 (p-STAT3) were higher in high-grade HNSCCs,and that triple positivity for CD44/ALDH1/p-STAT3 indicated a worse prognosis for HNSCC patients. Secondly,CD44(+)ALDH1(+) cells isolated from seven HNSCC patients showed greater tumorigenicity,radioresistance,and high expression of stemness (Bmi-1/Oct-4/Nanog) and epithelial-mesenchymal-transitional (Snail/Twist) genes as p-STAT3 level increased. Furthermore,we found that cucurbitacin I (JSI-124) can effectively inhibit the expression of p-STAT3 and capacities for tumorigenicity,sphere formation,and radioresistance in HNSCC-CD44(+)ALDH1(+). Notably,150 nmol/L cucurbitacin I effectively blocked STAT3 signaling and downstream survivin and Bcl-2 expression,and it induced apoptosis in HNSCC-CD44(+)ALDH1(+). Moreover,microarray data indicated that 100 nmol/L cucurbitacin I facilitated CD44(+)ALDH1(+) cells to differentiate into CD44�?�ALDH1�?� and enhanced the radiosensitivity of HNSCC-CD44(+)ALDH1(+). Xenotransplant experiments revealed that cucurbitacin I combined with radiotherapy significantly suppressed tumorigenesis and lung metastasis and further improved the survival rate in HNSCC-CD44(+)ALDH1(+)-transplanted immunocompromised mice. Taken together,our data show that cucurbitacin I,STAT3 inhibitor,reduces radioresistant,distant-metastatic,and CSC-like properties of HNSCC-CD44(+)ALDH1(+) cells. The potential of cucurbitacin I as a radiosensitizer should be verified in future anti-CSC therapy.
View Publication
产品类型:
产品号#:
01700
01705
产品名:
ALDEFLUOR™ 试剂盒
ALDEFLUOR™ DEAB试剂
Mandal M et al. ( 2005)
British Journal of Cancer 92 10 1899--1905
The Akt inhibitor KP372-1 suppresses Akt activity and cell proliferation and induces apoptosis in thyroid cancer cells
The phosphatidylinositol 3' kinase (PI3K)/phosphatase and tensin homologue deleted on chromosome ten/Akt pathway,which is a critical regulator of cell proliferation and survival,is mutated or activated in a wide variety of cancers. Akt appears to be a key central node in this pathway and thus is an attractive target for targeted molecular therapy. We demonstrated that Akt is highly phosphorylated in thyroid cancer cell lines and human thyroid cancer specimens,and hypothesised that KP372-1,an Akt inhibitor,would block signalling through the PI3K pathway and inhibit cell proliferation while inducing apoptosis of thyroid cancer cells. KP372-1 blocked signalling downstream of Akt in thyroid tumour cells,leading to inhibition of cell proliferation and increased apoptosis. As thyroid cancer consistently expresses phosphorylated Akt and KP372-1 effectively blocks Akt signalling,further preclinical evaluation of this compound for treatment of thyroid cancer is warranted.
View Publication
产品类型:
产品号#:
73222
产品名:
Pearce DJ et al. ( )
Stem cells (Dayton,Ohio) 23 6 752--60
Characterization of cells with a high aldehyde dehydrogenase activity from cord blood and acute myeloid leukemia samples.
Aldehyde dehydrogenase (ALDH) is a cytosolic enzyme that is responsible for the oxidation of intracellular aldehydes. Elevated levels of ALDH have been demonstrated in murine and human progenitor cells compared with other hematopoietic cells,and this is thought to be important in chemoresistance. A method for the assessment of ALDH activity in viable cells recently has been developed and made commercially available in a kit format. In this study,we confirmed the use of the ALDH substrate kit to identify cord blood stem/progenitor cells. Via multicolor flow cytometry of cord blood ALDH+ cells,we have expanded on their phenotypic analysis. We then assessed the incidence,morphology,phenotype,and nonobese diabetic/ severe combined immunodeficiency engraftment ability of ALDH+ cells from acute myeloid leukemia (AML) samples. AML samples had no ALDH+ cells at all,an extremely rare nonmalignant stem/progenitor cell population,or a less rare,leukemic stem cell population. Hence,in addition to identifying nonmalignant stem cells within some AML samples,a high ALDH activity also identifies some patients' CD34+/ CD38- leukemic stem cells. The incidence of normal or leukemic stem cells with an extremely high ALDH activity may have important implications for resistance to chemotherapy. Identification and isolation of leukemic cells on the basis of ALDH activity provides a tool for their isolation and further analysis.
View Publication
产品类型:
产品号#:
01700
01705
01701
01702
产品名:
ALDEFLUOR™ 试剂盒
ALDEFLUOR™ DEAB试剂
ALDEFLUOR™测定缓冲液
Silva IA et al. (JUN 2011)
Cancer research 71 11 3991--4001
Aldehyde dehydrogenase in combination with CD133 defines angiogenic ovarian cancer stem cells that portend poor patient survival.
Markers that reliably identify cancer stem cells (CSC) in ovarian cancer could assist prognosis and improve strategies for therapy. CD133 is a reported marker of ovarian CSC. Aldehyde dehydrogenase (ALDH) activity is a reported CSC marker in several solid tumors,but it has not been studied in ovarian CSC. Here we report that dual positivity of CD133 and ALDH defines a compelling marker set in ovarian CSC. All human ovarian tumors and cell lines displayed ALDH activity. ALDH(+) cells isolated from ovarian cancer cell lines were chemoresistant and preferentially grew tumors,compared with ALDH(-) cells,validating ALDH as a marker of ovarian CSC in cell lines. Notably,as few as 1,000 ALDH(+) cells isolated directly from CD133(-) human ovarian tumors were sufficient to generate tumors in immunocompromised mice,whereas 50,000 ALDH(-) cells were unable to initiate tumors. Using ALDH in combination with CD133 to analyze ovarian cancer cell lines,we observed even greater growth in the ALDH(+)CD133(+) cells compared with ALDH(+)CD133(-) cells,suggesting a further enrichment of ovarian CSC in ALDH(+)CD133(+) cells. Strikingly,as few as 11 ALDH(+)CD133(+) cells isolated directly from human tumors were sufficient to initiate tumors in mice. Like other CSC,ovarian CSC exhibited increased angiogenic capacity compared with bulk tumor cells. Finally,the presence of ALDH(+)CD133(+) cells in debulked primary tumor specimens correlated with reduced disease-free and overall survival in ovarian cancer patients. Taken together,our findings define ALDH and CD133 as a functionally significant set of markers to identify ovarian CSCs.
View Publication
产品类型:
产品号#:
01700
01705
产品名:
ALDEFLUOR™ 试剂盒
ALDEFLUOR™ DEAB试剂
Nijhof IS et al. (OCT 2015)
Leukemia 29 10 2039--49
Upregulation of CD38 expression on multiple myeloma cells by all-trans retinoic acid improves the efficacy of daratumumab.
Daratumumab is an anti-CD38 monoclonal antibody with lytic activity against multiple myeloma (MM) cells,including ADCC (antibody-dependent cellular cytotoxicity) and CDC (complement-dependent cytotoxicity). Owing to a marked heterogeneity of response to daratumumab therapy in MM,we investigated determinants of the sensitivity of MM cells toward daratumumab-mediated ADCC and CDC. In bone marrow samples from 144 MM patients,we observed no difference in daratumumab-mediated lysis between newly diagnosed or relapsed/refractory patients. However,we discovered,next to an expected effect of effector (natural killer cells/monocytes) to target (MM cells) ratio on ADCC,a significant association between CD38 expression and daratumumab-mediated ADCC (127 patients),as well as CDC (56 patients). Similarly,experiments with isogenic MM cell lines expressing different levels of CD38 revealed that the level of CD38 expression is an important determinant of daratumumab-mediated ADCC and CDC. Importantly,all-trans retinoic acid (ATRA) increased CD38 expression levels but also reduced expression of the complement-inhibitory proteins CD55 and CD59 in both cell lines and primary MM samples. This resulted in a significant enhancement of the activity of daratumumab in vitro and in a humanized MM mouse model as well. Our results provide the preclinical rationale for further evaluation of daratumumab combined with ATRA in MM patients.
View Publication
产品类型:
产品号#:
15621
15661
产品名:
RosetteSep™ 人CD3去除抗体混合物
RosetteSep™人CD3去除抗体混合物
Song Z et al. (JAN 2010)
Clinical cancer research : an official journal of the American Association for Cancer Research 16 2 587--99
Activities of SYK and PLCgamma2 predict apoptotic response of CLL cells to SRC tyrosine kinase inhibitor dasatinib.
PURPOSE: B-cell receptor signaling plays an important role in the pathogenesis of chronic lymphocytic leukemia (CLL). However,blocking B-cell receptor signaling with dasatinib,an inhibitor of SRC kinase,produced variable results in preclinical and clinical studies. We aim to define the molecular mechanisms underlying the differential dasatinib sensitivity and to uncover more effective therapeutic targets in CLL. EXPERIMENTAL DESIGN: Fresh CLL B cells were treated with dasatinib,and cell viability was followed. The CLL cases were then divided into good and poor responders. The cellular response was correlated with the activities of B-cell receptor signaling molecules,as well as with molecular and cytogenetic prognostic factors. RESULTS: Among 50 CLL cases,dasatinib treatment reduced cell viability by 2% to 90%,with an average reduction of 47% on day 4 of culture. The drug induced CLL cell death through the intrinsic apoptotic pathway mediated by reactive oxygen species. Unexpectedly,phosphorylation of SRC family kinases was inhibited by dasatinib in good,as well as poor,responders. As opposed to SRC family kinases,activities of two downstream molecules,SYK and phospholipase Cgamma2,correlate well with the apoptotic response of CLL cells to dasatinib. CONCLUSIONS: Thus,SYK inhibition predicts cellular response to dasatinib. SYK,together with phospholipase Cgamma2,may serve as potential biomarkers to predict dasatinib therapeutic response in patients. From the pathogenic perspective,our study suggests the existence of alternative mechanisms or pathways that activate SYK,independent of SRC kinase activities. The study further implicates that SYK might serve as a more effective therapeutic target in CLL treatment.
View Publication
产品类型:
产品号#:
15024
15064
产品名:
RosetteSep™ 人B细胞富集抗体混合物
RosetteSep™人B细胞富集抗体混合物
Liu Z et al. (FEB 2012)
Journal of stem cell research & therapy 2 1 1--8
Blockade of Autocrine TGF-$$ Signaling Inhibits Stem Cell Phenotype, Survival, and Metastasis of Murine Breast Cancer Cells.
Transforming growth factor beta (TGF-$$) signaling has been implicated in driving tumor progression and metastasis by inducing stem cell-like features in some human cancer cell lines. In this study,we have utilized a novel murine cell line NMuMG-ST,which acquired cancer stem cell (CSC) phenotypes during spontaneous transformation of the untransformed murine mammary cell line NMuMG,to investigate the role of autocrine TGF-$$ signaling in regulating their survival,metastatic ability,and the maintenance of cancer stem cell characteristics. We have retrovirally transduced a dominant-negative TGF-$$ type II receptor (DNRII) into the NMuMG-ST cell to abrogate autocrine TGF-$$ signaling. The expression of DNRII reduced TGF-$$ sensitivity of the NMuMG-ST cells in various cell-based assays. The blockade of autocrine TGF-$$ signaling reduced the ability of the cell to grow anchorage-independently and to resist serum deprivation-induced apoptosis. These phenotypes were associated with reduced levels of active and phosphorylated AKT and ERK,and Gli1 expression suggesting that these pathways contribute to the growth and survival of this model system. More interestingly,the abrogation of autocrine TGF-$$ signaling also led to the attenuation of several features associated with mammary stem cells including epithelial-mesenchymal transition,mammosphere formation,and expression of stem cell markers. When xenografted in athymic nude mice,the DNRII cells were also found to undergo apoptosis and induced significantly lower lung metastasis burden than the control cells even though they formed similar size of xenograft tumors. Thus,our results indicate that autocrine TGF-$$ signaling is involved in the maintenance and survival of stem-like cell population resulting in the enhanced metastatic ability of the murine breast cancer cells.
View Publication
产品类型:
产品号#:
05620
产品名:
MammoCult™人培养基试剂盒
He K et al. (JAN 2014)
International journal of cancer 134 1 43--54
Cancer cells acquire a drug resistant, highly tumorigenic, cancer stem-like phenotype through modulation of the PI3K/Akt/β-catenin/CBP pathway.
Cancer initiation and progression have been attributed to newly discovered subpopulations of self-renewing,highly tumorigenic,drug-resistant tumor cells termed cancer stem cells. Recently,we and others reported a new phenotypic plasticity wherein highly tumorigenic,drug-resistant cell populations could arise not only from pre-existing cancer stem-like populations but also from cancer cells lacking these properties. In the current study,we hypothesized that this newfound phenotypic plasticity may be mediated by PI3K/Akt and Wnt/β-catenin signaling,pathways previously implicated in carcinogenesis,pluripotency and drug resistance. Using GFP expression,Hoechst dye exclusion and fluorescence activated cell sorting (FACS) of cancer cell lines,we identified and tracked cancer stem-like side populations (SP) of cancer cells characterized by high tumorigenicity and drug resistance. We found that pharmacological inhibition or genetic depletion of PI3K and AKT markedly reduced the spontaneous conversion of nonside population (NSP) cells into cancer stem-like SP cells,whereas PI3K/Akt activation conversely enhanced NSP to SP conversion. PI3K/AKT signaling was mediated through downstream phosphorylation of GSK3β,which led to activation and accumulation of β-catenin. Accordingly,pharmacological or genetic perturbation of GSK3β or β-catenin dramatically impacted conversion of NSP to SP. Further downstream,β-catenin's effects on NSP-SP equilibrium were dependent upon its interaction with CBP,a KAT3 family coactivator. These studies provide a mechanistic model wherein PI3K/Akt/β-catenin/CBP signaling mediates phenotypic plasticity in and out of a drug-resistant,highly tumorigenic state. Therefore,targeting this pathway has unique potential for overcoming the therapy resistance and disease progression attributed to the cancer stem-like phenotype.
View Publication
产品类型:
产品号#:
72772
72774
产品名:
IQ-1
Naume B et al. (JAN 2004)
Cytotherapy 6 3 244--52
Detection of isolated tumor cells in peripheral blood and in BM: evaluation of a new enrichment method.
Cell enrichment methods that deal with larger volumes of peripheral blood and BM are needed for increased sensitivity of detection,characterization and quantification of isolated tumor cells (ITC). This study was designed to evaluate a new procedure,the RosetteSep-Applied Imaging Rare Event (RARE) detection method,which depletes the majority of the erythrocytes and leucocytes in a peripheral blood (PB) sample,thereby negatively enriching tumor cells if present. This enrichment procedure allows for increased sensitivity,by analyzing a 5-10 fold larger volume of blood,compared with a direct immunocytochemical (ICC) technique,with minimal impact on laboratory workload. Model experiments showed comparable tumor cell recoveries between the two tested methods,both in PB and BM. Clinical samples were evaluated using paired PB and BM samples from 95 carcinoma patients. Analysis of PB results showed that 25.3% had textgreater or = 1 tumor cell detected by the RARE procedure,compared with 5.2% after direct ICC analysis,analyzing a 10-fold larger volume by the RARE procedure. The direct ICC analysis of BM from the same patients revealed 16.8% positive. The ITC detection differed both quantitatively and qualitatively between BM and PB,as samples with high numbers of ITC in BM were still negative in PB. The clinical significance of ITC in blood still needs to be established. However,the easy access of peripheral blood,and the increased sensitivity obtained by increasing the sample volume with the RARE procedure,suggests that the value of peripheral blood analysis should be tested in parallel in studies where ITC detection in BM is performed.
View Publication