A novel I-branching beta-1,6-N-acetylglucosaminyltransferase involved in human blood group I antigen expression.
The human blood group i and I antigens are determined by linear and branched poly-N-acetyllactosamine structures,respectively. In erythrocytes,the fetal i antigen is converted to the adult I antigen by I-branching beta-1,6-N-acetylglucosaminyltransferase (IGnT) during development. Dysfunction of the I-branching enzyme may result in the adult i phenotype in erythrocytes. However,the I gene responsible for blood group I antigen has not been fully confirmed. We report here a novel human I-branching enzyme,designated IGnT3. The genes for IGnT1 (reported in 1993),IGnT2 (also presented in this study),and IGnT3 consist of 3 exons and share the second and third exons. Bone marrow cells preferentially expressed IGnT3 transcript. During erythroid differentiation using CD34(+) cells,IGnT3 was markedly up-regulated with concomitant decrease in IGnT1/2. Moreover,reticulocytes expressed the IGnT3 transcript,but IGnT1/2 was below detectable levels. By molecular genetic analyses of an adult i pedigree,individuals with the adult i phenotype were revealed to have heterozygous alleles with mutations in exon 2 (1006GtextgreaterA; Gly336Arg) and exon 3 (1049GtextgreaterA; Gly350Glu),respectively,of the IGnT3 gene. Chinese hamster ovary (CHO) cells transfected with each mutated IGnT3 cDNA failed to express I antigen. These findings indicate that the expression of the blood group I antigen in erythrocytes is determined by a novel IGnT3,not by IGnT1 or IGnT2.
View Publication
Landen CN et al. (DEC 2010)
Molecular cancer therapeutics 9 12 3186--99
Targeting aldehyde dehydrogenase cancer stem cells in ovarian cancer.
Aldehyde dehydrogenase-1A1 (ALDH1A1) expression characterizes a subpopulation of cells with tumor-initiating or cancer stem cell properties in several malignancies. Our goal was to characterize the phenotype of ALDH1A1-positive ovarian cancer cells and examine the biological effects of ALDH1A1 gene silencing. In our analysis of multiple ovarian cancer cell lines,we found that ALDH1A1 expression and activity was significantly higher in taxane- and platinum-resistant cell lines. In patient samples,72.9% of ovarian cancers had ALDH1A1 expression in which the percentage of ALDH1A1-positive cells correlated negatively with progression-free survival (6.05 vs. 13.81 months; P textless 0.035). Subpopulations of A2780cp20 cells with ALDH1A1 activity were isolated for orthotopic tumor-initiating studies,where tumorigenicity was approximately 50-fold higher with ALDH1A1-positive cells. Interestingly,tumors derived from ALDH1A1-positive cells gave rise to both ALDH1A1-positive and ALDH1A1-negative populations,but ALDH1A1-negative cells could not generate ALDH1A1-positive cells. In an in vivo orthotopic mouse model of ovarian cancer,ALDH1A1 silencing using nanoliposomal siRNA sensitized both taxane- and platinum-resistant cell lines to chemotherapy,significantly reducing tumor growth in mice compared with chemotherapy alone (a 74%-90% reduction; P textless 0.015). These data show that the ALDH1A1 subpopulation is associated with chemoresistance and outcome in ovarian cancer patients,and targeting ALDH1A1 sensitizes resistant cells to chemotherapy. ALDH1A1-positive cells have enhanced,but not absolute,tumorigenicity but do have differentiation capacity lacking in ALDH1A1-negative cells. This enzyme may be important for identification and targeting of chemoresistant cell populations in ovarian cancer.
View Publication
产品类型:
产品号#:
01700
01705
产品名:
ALDEFLUOR™ 试剂盒
ALDEFLUOR™ DEAB试剂
Jiang T et al. (FEB 2009)
Cancer research 69 3 845--54
Achaete-scute complex homologue 1 regulates tumor-initiating capacity in human small cell lung cancer.
The basic helix-loop-helix transcription factor achaete-scute complex homologue 1 (ASCL1) is essential for the development of normal lung neuroendocrine cells as well as other endocrine and neural tissues. Small cell lung cancer (SCLC) and non-SCLC with neuroendocrine features express ASCL1,where the factor may play a role in the virulence and primitive neuroendocrine phenotype of these tumors. In this study,RNA interference knockdown of ASCL1 in cultured SCLC resulted in inhibition of soft agar clonogenic capacity and induction of apoptosis. cDNA microarray analyses bolstered by expression studies,flow cytometry,and chromatin immunoprecipitation identified two candidate stem cell marker genes,CD133 and aldehyde dehydrogenase 1A1 (ALDH1A1),to be directly regulated by ASCL1 in SCLC. In SCLC direct xenograft tumors,we detected a relatively abundant CD133(high)-ASCL1(high)-ALDH1(high) subpopulation with markedly enhanced tumorigenicity compared with cells with weak CD133 expression. Tumorigenicity in the CD133(high) subpopulation depended on continued ASCL1 expression. Whereas CD133(high) cells readily reconstituted the range of CD133 expression seen in the original xenograft tumor,CD133(low) cells could not. Our findings suggest that a broad range of SCLC cells has tumorigenic capacity rather than a small discrete population. Intrinsic tumor cell heterogeneity,including variation in key regulatory factors such as ASCL1,can modulate tumorigenicity in SCLC.
View Publication
产品类型:
产品号#:
01700
01705
产品名:
ALDEFLUOR™ 试剂盒
ALDEFLUOR™ DEAB试剂
Hochwald SN et al. ( 2009)
Cell cycle (Georgetown,Tex.) 8 15 2435--2443
A novel small molecule inhibitor of FAK decreases growth of human pancreatic cancer.
Focal adhesion kinase (FAK) is a cytoplasmic tyrosine kinase that is overexpressed in many types of tumors,including pancreatic cancer,and plays an important role in cell adhesion and survival signaling. Pancreatic cancer is a lethal disease and is very resistant to chemotherapy,and FAK has been shown recently to assist in tumor cell survival. Therefore,FAK is an excellent potential target for anti-cancer therapy. We identified a novel small molecule inhibitor (1,2,4,5-Benzenetetraamine tetrahydrochloride,that we called Y15) targeting the main autophosphorylation site of FAK and hypothesized that it would be an effective treatment strategy against human pancreatic cancer. Y15 specifically blocked phosphorylation of Y397-FAK and total phosphorylation of FAK. It directly inhibited FAK autophosphorylation in a dose- and time-dependent manner. Furthermore,Y15 increased pancreatic cancer cell detachment and inhibited cell adhesion in a dose-dependent manner. Y15 effectively caused human pancreatic tumor regression in vivo,when administered alone and its effects were synergistic with gemcitabine chemotherapy. This was accompanied by a decrease in Y397-phosphorylation of FAK in the tumors treated with Y15. Thus,targeting the Y397 site of FAK in pancreatic cancer with the small molecule inhibitor,1,2,4,5-Benzenetetraamine tetrahydrochloride,is a potentially effective treatment strategy in this deadly disease.
View Publication
产品类型:
产品号#:
73132
73134
产品名:
Smith GH (JAN 1996)
Breast cancer research and treatment 39 1 21--31
Experimental mammary epithelial morphogenesis in an in vivo model: evidence for distinct cellular progenitors of the ductal and lobular phenotype.
An in vivo transplantation system has been used to evaluate the developmental capacities of specific mouse mammary epithelial cell populations. Specifically,mouse mammary epithelial cells with distinctly limited developmental potentials have been identified using this procedure. Two distinct epithelial cell progenitors have been identified by experiments designed to determine whether basal lobular and ductal phenotypes could develop independently under conditions imposed by a limiting dilution. The prediction that these separate epithelial progenitors must exist was based upon the results from transplantation experiments carried out in epithelium-divested mammary fat pads of syngeneic mice with mammary epithelium from two different transgenic mouse models. The results presented here demonstrate the following points: 1) lobular,i.e. secretory,progenitor cells are present as distinct entities among the mammary epithelial cells found in immature virgin female mice; 2) similarly,ductal epithelial progenitors are present within the same population; 3) lobular progenitors are present in greater numbers,although both cell populations are extremely small; 4) as expected,some inocula produce outgrowths with simultaneous development of both lobular and ductal phenotypes--it is not known whether this indicates cooperative interaction between the two epithelial progenitors or signals the presence of a third progenitor type capable of producing both ductular and lobular committed daughters; 5) these findings have important consequences in the design of experiments aimed at testing the effects of known and putative mammary oncogenes and tumor suppressor genes,using techniques which include cellular transformation in vitro followed by in vivo cultivation and evaluation.
View Publication
Chow AKM et al. (DEC 2015)
Molecular cancer 14 1 80
Preclinical analysis of the anti-tumor and anti-metastatic effects of Raf265 on colon cancer cells and CD26(+) cancer stem cells in colorectal carcinoma.
BACKGROUND In colorectal carcinoma (CRC),activation of the Raf/MEK/ERK signaling pathway is commonly observed. In addition,the commonly used 5FU-based chemotherapy in patients with metastatic CRC was found to enrich a subpopulation of CD26(+) cancer stem cells (CSCs). As activation of the Raf/MEK/ERK signaling pathway was also found in the CD26(+) CSCs and therefore,we hypothesized that an ATP-competitive pan-Raf inhibitor,Raf265,is effective in eliminating the cancer cells and the CD26(+) CSCs in CRC patients. METHODS HT29 and HCT116 cells were treated with various concentrations of Raf265 to study the anti-proliferative and apoptotic effects of Raf265. Anti-tumor effect was also demonstrated using a xenograft model. Cells were also treated with Raf265 in combination with 5FU to demonstrate the anti-migratory and invasive effects by targeting on the CD26(+) CSCs and the anti-metastatic effect of the combined treatment was shown in an orthotopic CRC model. RESULTS Raf265 was found to be highly effective in inhibiting cell proliferation and tumor growth through the inhibition of the RAF/MEK/ERK signaling pathway. In addition,anti-migratory and invasive effect was found with Raf265 treatment in combination with 5FU by targeting on the CD26(+) cells. Finally,the anti-tumor and anti-metastatic effect of Raf265 in combination with 5FU was also demonstrated. CONCLUSIONS This preclinical study demonstrates the anti-tumor and anti-metastatic activity of Raf265 in CRC,providing the basis for exploiting its potential use and combination therapy with 5FU in the clinical treatment of CRC.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Collins SM et al. (DEC 2013)
Cancer immunology,immunotherapy : CII 62 12 1841--9
Elotuzumab directly enhances NK cell cytotoxicity against myeloma via CS1 ligation: evidence for augmented NK cell function complementing ADCC.
Elotuzumab is a monoclonal antibody in development for multiple myeloma (MM) that targets CS1,a cell surface glycoprotein expressed on MM cells. In preclinical models,elotuzumab exerts anti-MM efficacy via natural killer (NK)-cell-mediated antibody-dependent cellular cytotoxicity (ADCC). CS1 is also expressed at lower levels on NK cells where it acts as an activating receptor. We hypothesized that elotuzumab may have additional mechanisms of action via ligation of CS1 on NK cells that complement ADCC activity. Herein,we show that elotuzumab appears to induce activation of NK cells by binding to NK cell CS1 which promotes cytotoxicity against CS1(+) MM cells but not against autologous CS1(+) NK cells. Elotuzumab may also promote CS1-CS1 interactions between NK cells and CS1(+) target cells to enhance cytotoxicity in a manner independent of ADCC. NK cell activation appears dependent on differential expression of the signaling intermediary EAT-2 which is present in NK cells but absent in primary,human MM cells. Taken together,these data suggest elotuzumab may enhance NK cell function directly and confer anti-MM efficacy by means beyond ADCC alone.
View Publication
产品类型:
产品号#:
18387
18387RF
产品名:
Coffman KT et al. (NOV 2003)
Cancer Research 63 22 7907--12
Differential EphA2 epitope display on normal versus malignant cells.
The EphA2 receptor tyrosine kinase is overexpressed in many different types of human cancers where it functions as a powerful oncoprotein. Dramatic changes in the subcellular localization and function of EphA2 have also been linked with cancer,and in particular,unstable cancer cell-cell contacts prevent EphA2 from stably binding its ligand on the surface of adjoining cells. This change is important in light of evidence that ligand binding causes EphA2 to transmit signals that negatively regulate tumor cell growth and invasiveness and also induce EphA2 degradation. On the basis of these properties,we have begun to target EphA2 on tumor cells using agonistic antibodies,which mimic the consequences of ligand binding. In our present study,we show that a subset of agonistic EphA2 antibodies selectively bind epitopes on malignant cells,which are not available on nontransformed epithelial cells. We also show that such epitopes arise from differential cell-cell adhesions and that the stable intercellular junctions of nontransformed epithelial cells occlude the binding site for ligand,as well as this subset of EphA2 antibodies. Finally,we demonstrate that antibody targeting of EphA2 decreases tumor cell growth as measured using xenograft tumor models and found that the mechanism of antibody action relates to EphA2 protein degradation in vivo. Taken together,these results suggest new opportunities for therapeutic targeting of the large number of different cancers that express EphA2 in a manner that could minimize potential toxicities to normal cells.
View Publication
产品类型:
产品号#:
03800
03801
03802
03803
03804
03805
03806
产品名:
ClonaCell™-HY 杂交瘤试剂盒
ClonaCell™-HY Medium
ClonaCell™-HY Medium
ClonaCell™-HY Medium
ClonaCell™-HY Medium
ClonaCell™-HY Medium
ClonaCell™-HY PEG (融合)
Peacock CD and Watkins DN (JUN 2008)
Journal of clinical oncology : official journal of the American Society of Clinical Oncology 26 17 2883--9
Cancer stem cells and the ontogeny of lung cancer.
Lung cancer is the leading cause of cancer death in the world today and is poised to claim approximately 1 billion lives during the 21st century. A major challenge in treating this and other cancers is the intrinsic resistance to conventional therapies demonstrated by the stem/progenitor cell that is responsible for the sustained growth,survival,and invasion of the tumor. Identifying these stem cells in lung cancer and defining the biologic processes necessary for their existence is paramount in developing new clinical approaches with the goal of preventing disease recurrence. This review summarizes our understanding of the cellular and molecular mechanisms operating within the putative cancer-initiating cell at the core of lung neoplasia.
View Publication