Bhattacharyya S and Khanduja KL (APR 2010)
Acta biochimica et biophysica Sinica 42 4 237--42
New hope in the horizon: cancer stem cells.
The major goal of researchers and oncologists is to develop promising ground for novel therapeutic strategies to prevent recurrence or relapse of cancer. Recent evidences suggest that a subset of cells called cancer stem cells (CSCs) are present within the tumor mass which possess tumorigenic capacity and may be responsible for propagation,relapse,and metastatic dissemination. These cells have certain stem cell-like properties,e.g. quiescence,selfrenewal,asymmetric division,and multidrug resistance which allow them to drive tumor growth and evade conventional therapies. A number of markers and assays have been designed to isolate and characterize the CSC population from the bulk tumor. The objective now is to selectively target the CSCs in order to eliminate the tumor from root,overcoming the emergence of clones capable of evading traditional therapy. This approach may help in increasing the overall disease-free survival in some cancers.
View Publication
产品类型:
产品号#:
01700
01705
产品名:
ALDEFLUOR™ 试剂盒
ALDEFLUOR™ DEAB试剂
Uitdehaag JCM et al. ( 2014)
PloS one 9 3 e92146
Comparison of the cancer gene targeting and biochemical selectivities of all targeted kinase inhibitors approved for clinical use.
The anti-proliferative activities of all twenty-five targeted kinase inhibitor drugs that are in clinical use were measured in two large assay panels: (1) a panel of proliferation assays of forty-four human cancer cell lines from diverse tumour tissue origins; and (2) a panel of more than 300 kinase enzyme activity assays. This study provides a head-on comparison of all kinase inhibitor drugs in use (status Nov. 2013),and for six of these drugs,the first kinome profiling data in the public domain. Correlation of drug activities with cancer gene mutations revealed novel drug sensitivity markers,suggesting that cancers dependent on mutant CTNNB1 will respond to trametinib and other MEK inhibitors,and cancers dependent on SMAD4 to small molecule EGFR inhibitor drugs. Comparison of cellular targeting efficacies reveals the most targeted inhibitors for EGFR,ABL1 and BRAF(V600E)-driven cell growth,and demonstrates that the best targeted agents combine high biochemical potency with good selectivity. For ABL1 inhibitors,we computationally deduce optimized kinase profiles for use in a next generation of drugs. Our study shows the power of combining biochemical and cellular profiling data in the evaluation of kinase inhibitor drug action.
View Publication
Ioannidis P et al. (MAY 2005)
The Journal of biological chemistry 280 20 20086--93
CRD-BP/IMP1 expression characterizes cord blood CD34+ stem cells and affects c-myc and IGF-II expression in MCF-7 cancer cells.
The coding region determinant-binding protein/insulin-like growth factor II mRNA-binding protein (CRD-BP/IMP1) is an RNA-binding protein specifically recognizing c-myc,leader 3' IGF-II and tau mRNAs,and the H19 RNA. CRD-BP/IMP1 is predominantly expressed in embryonal tissues but is de novo activated and/or overexpressed in various human neoplasias. To address the question of whether CRD-BP/IMP1 expression characterizes certain cell types displaying distinct proliferation and/or differentiation properties (i.e. stem cells),we isolated cell subpopulations from human bone marrow,mobilized peripheral blood,and cord blood,all sources known to contain stem cells,and monitored for its expression. CRD-BP/IMP1 was detected only in cord blood-derived CD34(+) stem cells and not in any other cell type of either adult or cord blood origin. Adult BM CD34(+) cells cultured in the presence of 5'-azacytidine expressed de novo CRD-BP/IMP1,suggesting that epigenetic modifications may be responsible for its silencing in adult non-expressing cells. Furthermore,by applying the short interfering RNA methodology in MCF-7 cells,we observed,subsequent to knocking down CRD-BP/IMP1,decreased c-myc expression,increased IGF-II mRNA levels,and reduced cell proliferation rates. These data 1) suggest a normal role for CRD-BP/IMP1 in pluripotent stem cells with high renewal capacity,like the CB CD34(+) cells,2) indicate that altered methylation may directly or indirectly affect its expression in adult cells,3) imply that its de novo activation in cancer cells may affect the expression of c-Myc and insulin-like growth factor II,and 4) indicate that the inhibition of CRD-BP/IMP1 expression might affect cancer cell proliferation.
View Publication
产品类型:
产品号#:
09850
产品名:
Feldmann G et al. (MAR 2007)
Cancer research 67 5 2187--96
Blockade of hedgehog signaling inhibits pancreatic cancer invasion and metastases: a new paradigm for combination therapy in solid cancers.
In the context of pancreatic cancer,metastasis remains the most critical determinant of resectability,and hence survival. The objective of this study was to determine whether Hedgehog (Hh) signaling plays a role in pancreatic cancer invasion and metastasis because this is likely to have profound clinical implications. In pancreatic cancer cell lines,Hh inhibition with cyclopamine resulted in down-regulation of snail and up-regulation of E-cadherin,consistent with inhibition of epithelial-to-mesenchymal transition,and was mirrored by a striking reduction of in vitro invasive capacity (P textless 0.0001). Conversely,Gli1 overexpression in immortalized human pancreatic ductal epithelial cells led to a markedly invasive phenotype (P textless 0.0001) and near total down-regulation of E-cadherin. In an orthotopic xenograft model,cyclopamine profoundly inhibited metastatic spread; only one of seven cyclopamine-treated mice developed pulmonary micrometastases versus seven of seven mice with multiple macrometastases in control animals. Combination of gemcitabine and cyclopamine completely abrogated metastases while also significantly reducing the size of primary" tumors. Gli1 levels were up-regulated in tissue samples of metastatic human pancreatic cancer samples compared with matched primary tumors. Aldehyde dehydrogenase (ALDH) overexpression is characteristic for both hematopoietic progenitors and leukemic stem cells; cyclopamine preferentially reduced "ALDH-high" cells by approximately 3-fold (P = 0.048). We confirm pharmacologic Hh pathway inhibition as a valid therapeutic strategy for pancreatic cancer and show for the first time its particular efficacy against metastatic spread. By targeting specific cellular subpopulations likely involved in tumor initiation at metastatic sites�
View Publication
产品类型:
产品号#:
01700
01705
01701
01702
产品名:
ALDEFLUOR™ 试剂盒
ALDEFLUOR™ DEAB试剂
ALDEFLUOR™测定缓冲液
Miyoshi N et al. (JAN 2010)
Proceedings of the National Academy of Sciences of the United States of America 107 1 40--5
Defined factors induce reprogramming of gastrointestinal cancer cells.
Although cancer is a disease with genetic and epigenetic origins,the possible effects of reprogramming by defined factors remain to be fully understood. We studied the effects of the induction or inhibition of cancer-related genes and immature status-related genes whose alterations have been reported in gastrointestinal cancer cells. Retroviral-mediated introduction of induced pluripotent stem (iPS) cell genes was necessary for inducing the expression of immature status-related proteins,including Nanog,Ssea4,Tra-1-60,and Tra-1-80 in esophageal,stomach,colorectal,liver,pancreatic,and cholangiocellular cancer cells. Induced cells,but not parental cells,possessed the potential to express morphological patterns of ectoderm,mesoderm,and endoderm,which was supported by epigenetic studies,indicating methylation of DNA strands and the histone H3 protein at lysine 4 in promoter regions of pluripotency-associated genes such as NANOG. In in vitro analysis induced cells showed slow proliferation and were sensitized to differentiation-inducing treatment,and in vivo tumorigenesis was reduced in NOD/SCID mice. This study demonstrated that pluripotency was manifested in induced cells,and that the induced pluripotent cancer (iPC) cells were distinct from natural cancer cells with regard to their sensitivity to differentiation-inducing treatment. Retroviral-mediated introduction of iPC cells confers higher sensitivity to chemotherapeutic agents and differentiation-inducing treatment.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Ishizawa K et al. (SEP 2010)
Cell stem cell 7 3 279--82
Tumor-initiating cells are rare in many human tumors.
Tumor-initiating cells (TICs) are defined by their ability to form tumors after xenotransplantation in immunodeficient mice and appear to be relatively rare in most human cancers. Recent data in melanoma indicate that the frequency of TICs increases dramatically via more permissive xenotransplantation conditions,raising the possibility that the true frequency of TICs has been greatly underestimated in most human tumors. We compared the growth of human pancreatic,non-small cell lung,and head and neck carcinomas in NOD/SCID and NSG mice. Although TIC frequency was detected up to 10-fold higher in NSG mice,it remained low (textless1 in 2500 cells) in all cases. Moreover,aldehyde dehydrogenase-positive (ALDH(+)) and CD44(+)CD24(+) cells,phenotypically distinct cells enriched in TICs,were equally tumorigenic in NOD/SCID and NSG mice. Our findings demonstrate that TICs are rare in these cancers and that the identification of TICs and their frequency in other human malignancies should be validated via primary tumors and highly permissive xenotransplantation conditions.
View Publication
产品类型:
产品号#:
01700
01705
01701
01702
产品名:
ALDEFLUOR™ 试剂盒
ALDEFLUOR™ DEAB试剂
ALDEFLUOR™测定缓冲液
Dalerba P et al. (JUN 2007)
Proceedings of the National Academy of Sciences of the United States of America 104 24 10158--63
Phenotypic characterization of human colorectal cancer stem cells.
Recent observations indicate that,in several types of human cancer,only a phenotypic subset of cancer cells within each tumor is capable of initiating tumor growth. This functional subset of cancer cells is operationally defined as the cancer stem cell" (CSC) subset. Here we developed a CSC model for the study of human colorectal cancer (CRC). Solid CRC tissues�
View Publication
Circulating clonotypic B cells in classic Hodgkin lymphoma.
Although Hodgkin and Reed-Sternberg (HRS) cells are B lymphoid cells,they are unlike any normal cells of that lineage. Moreover,the limited proliferative potential of HRS cells belies the clinical aggressiveness of Hodgkin lymphoma (HL). More than 20 years ago,the L428 HL cell line was reported to contain a small population of phenotypic B cells that appeared responsible for the continued generation of HRS cells. This observation,however,has never been corroborated,and such clonotypic B cells have never been documented in HL patients. We found that both the L428 and KM-H2 HL cell lines contained rare B-cell subpopulations responsible for the generation and maintenance of the predominant HRS cell population. The B cells within the HL cell lines expressed immunoglobulin light chain,the memory B-cell antigen CD27,and the stem cell marker aldehyde dehydrogenase (ALDH). Clonal CD27(+)ALDH(high) B cells,sharing immunoglobulin gene rearrangements with lymph node HRS cells,were also detected in the blood of most newly diagnosed HL patients regardless of stage. Although the clinical significance of circulating clonotypic B cells in HL remains unclear,these data suggest they may be the initiating cells for HL.
View Publication
产品类型:
产品号#:
01700
01705
产品名:
ALDEFLUOR™ 试剂盒
ALDEFLUOR™ DEAB试剂
Wang H et al. (JAN 2012)
Journal of translational medicine 10 1 167
Oncolytic vaccinia virus GLV-1h68 strain shows enhanced replication in human breast cancer stem-like cells in comparison to breast cancer cells.
BACKGROUND: Recent data suggest that cancer stem cells (CSCs) play an important role in cancer,as these cells possess enhanced tumor-forming capabilities and are responsible for relapses after apparently curative therapies have been undertaken. Hence,novel cancer therapies will be needed to test for both tumor regression and CSC targeting. The use of oncolytic vaccinia virus (VACV) represents an attractive anti-tumor approach and is currently under evaluation in clinical trials. The purpose of this study was to demonstrate whether VACV does kill CSCs that are resistant to irradiation and chemotherapy. METHODS: Cancer stem-like cells were identified and separated from the human breast cancer cell line GI-101A by virtue of increased aldehyde dehydrogenase 1 (ALDH1) activity as assessed by the ALDEFLUOR assay and cancer stem cell-like features such as chemo-resistance,irradiation-resistance and tumor-initiating were confirmed in cell culture and in animal models. VACV treatments were applied to both ALDEFLUOR-positive cells in cell culture and in xenograft tumors derived from these cells. Moreover,we identified and isolated CD44(+)CD24(+)ESA(+) cells from GI-101A upon an epithelial-mesenchymal transition (EMT). These cells were similarly characterized both in cell culture and in animal models. RESULTS: We demonstrated for the first time that the oncolytic VACV GLV-1h68 strain replicated more efficiently in cells with higher ALDH1 activity that possessed stem cell-like features than in cells with lower ALDH1 activity. GLV-1h68 selectively colonized and eventually eradicated xenograft tumors originating from cells with higher ALDH1 activity. Furthermore,GLV-1h68 also showed preferential replication in CD44(+)CD24(+)ESA(+) cells derived from GI-101A upon an EMT induction as well as in xenograft tumors originating from these cells that were more tumorigenic than CD44(+)CD24(-)ESA(+) cells. CONCLUSIONS: Taken together,our findings indicate that GLV-1h68 efficiently replicates and kills cancer stem-like cells. Thus,GLV-1h68 may become a promising agent for eradicating both primary and metastatic tumors,especially tumors harboring cancer stem-like cells that are resistant to chemo and/or radiotherapy and may be responsible for recurrence of tumors.
View Publication
产品类型:
产品号#:
01700
01705
05620
产品名:
ALDEFLUOR™ 试剂盒
ALDEFLUOR™ DEAB试剂
MammoCult™人培养基试剂盒
Naka K et al. (FEB 2010)
Nature 463 7281 676--80
TGF-beta-FOXO signalling maintains leukaemia-initiating cells in chronic myeloid leukaemia.
Chronic myeloid leukaemia (CML) is caused by a defined genetic abnormality that generates BCR-ABL,a constitutively active tyrosine kinase. It is widely believed that BCR-ABL activates Akt signalling that suppresses the forkhead O transcription factors (FOXO),supporting the proliferation or inhibiting the apoptosis of CML cells. Although the use of the tyrosine kinase inhibitor imatinib is a breakthrough for CML therapy,imatinib does not deplete the leukaemia-initiating cells (LICs) that drive the recurrence of CML. Here,using a syngeneic transplantation system and a CML-like myeloproliferative disease mouse model,we show that Foxo3a has an essential role in the maintenance of CML LICs. We find that cells with nuclear localization of Foxo3a and decreased Akt phosphorylation are enriched in the LIC population. Serial transplantation of LICs generated from Foxo3a(+/+) and Foxo3a(-/-) mice shows that the ability of LICs to cause disease is significantly decreased by Foxo3a deficiency. Furthermore,we find that TGF-beta is a critical regulator of Akt activation in LICs and controls Foxo3a localization. A combination of TGF-beta inhibition,Foxo3a deficiency and imatinib treatment led to efficient depletion of CML in vivo. Furthermore,the treatment of human CML LICs with a TGF-beta inhibitor impaired their colony-forming ability in vitro. Our results demonstrate a critical role for the TGF-beta-FOXO pathway in the maintenance of LICs,and strengthen our understanding of the mechanisms that specifically maintain CML LICs in vivo.
View Publication