Zhu Y et al. ( 2012)
Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine 33 5 1349--1362
Antitumor effect of the mTOR inhibitor everolimus in combination with trastuzumab on human breast cancer stem cells in vitro and in vivo.
This study evaluated the effects of a mammalian target of mTOR inhibitor everolimus alone or in combination with trastuzumab on stem cells from HER2-overexpressing primary breast cancer cells and the BT474 breast cancer cell line in vitro and in vivo. For the in vitro studies,we sorted ESA(+)CD44(+)CD24(-/low) cells as stem cells from primary breast cancer cells and BT474 cells using flow cytometry. The MTT assay was used to quantify the inhibitory effect of the drugs on total cells and stem cells specifically. Stem cell apoptosis,cell cycle distributions,and their tumorigenicity after treatment were investigated by flow cytometry or soft agar colony formation assays. For the in vivo studies,BALB/c mice were injected with BT474 stem cells,and the different treatments were administered. After necropsy,the expression of Ki67,CD31,AKT1,and phospho-AKT (Thr308) was analyzed by immunohistochemistry. For the in vitro studies,Treatment with everolimus resulted in stem cell growth inhibition in a dose-dependent manner. The combination of everolimus with trastuzumab was more effective at inhibiting cell growth (P textless 0.001) and tumorigenicity (P textless 0.001) compared with single-agent therapy. In addition,an increase in G1 cell cycle arrest and an increased population of cells in early apoptosis were seen in the combination treatment group compared with either of the single-agent groups (P textless 0.01). For the in vivo studies,everolimus plus trastuzumab therapy was much more effective at reducing tumor volume in mice compared with either single agent alone (P textless 0.05). Compared with everolimus alone,the combination of everolimus and trastuzumab reduced the expression of Ki67,AKT1,and phospho-AKT (Thr308) (P textless 0.05). We conclude that everolimus has effective inhibitory effects on HER2-overexpressing stem cells in vitro and vivo. Everolimus plus trastuzumab is a rational combination treatment that may be promising in human clinical trials.
View Publication
产品类型:
产品号#:
73122
73124
产品名:
依维莫司
依维莫司
Gonç et al. ( 2016)
PloS one 11 3 e0150407
Effect of Melatonin in Epithelial Mesenchymal Transition Markers and Invasive Properties of Breast Cancer Stem Cells of Canine and Human Cell Lines.
Cancer stem cells (CSCs) have been associated with metastasis and therapeutic resistance and can be generated via epithelial mesenchymal transition (EMT). Some studies suggest that the hormone melatonin acts in CSCs and may participate in the inhibition of the EMT. The objectives of this study were to evaluate the formation of mammospheres from the canine and human breast cancer cell lines,CMT-U229 and MCF-7,and the effects of melatonin treatment on the modulation of stem cell and EMT molecular markers: OCT4,E-cadherin,N-cadherin and vimentin,as well as on cell viability and invasiveness of the cells from mammospheres. The CMT-U229 and MCF-7 cell lines were subjected to three-dimensional culture in special medium for stem cells. The phenotype of mammospheres was first evaluated by flow cytometry (CD44+/CD24low/- marking). Cell viability was measured by MTT colorimetric assay and the expression of the proteins OCT4,E-cadherin,N-cadherin and vimentin was evaluated by immunofluorescence and quantified by optical densitometry. The analysis of cell migration and invasion was performed in Boyden Chamber. Flow cytometry proved the stem cell phenotype with CD44+/CD24low/- positive marking for both cell lines. Cell viability of CMT-U229 and MCF-7 cells was reduced after treatment with 1mM melatonin for 24 h (Ptextless0.05). Immunofluorescence staining showed increased E-cadherin expression (Ptextless0.05) and decreased expression of OCT4,N-cadherin and vimentin (Ptextless0.05) in both cell lines after treatment with 1 mM melatonin for 24 hours. Moreover,treatment with melatonin was able to reduce cell migration and invasion in both cell lines when compared to control group (Ptextless0.05). Our results demonstrate that melatonin shows an inhibitory role in the viability and invasiveness of breast cancer mammospheres as well as in modulating the expression of proteins related to EMT in breast CSCs,suggesting its potential anti-metastatic role in canine and human breast cancer cell lines.
View Publication
产品类型:
产品号#:
05620
产品名:
MammoCult™人培养基试剂盒
Rajeshkumar NV et al. (SEP 2010)
Molecular cancer therapeutics 9 9 2582--92
A combination of DR5 agonistic monoclonal antibody with gemcitabine targets pancreatic cancer stem cells and results in long-term disease control in human pancreatic cancer model.
Pancreatic ductal adenocarcinoma (PDA) is an aggressive malignancy with one of the worst outcomes among all cancers. PDA often recurs after initial treatment to result in patient death despite the use of chemotherapy or radiation therapy. PDA contains a subset of tumor-initiating cells capable of extensive self-renewal known as cancer stem cells (CSC),which may contribute to therapeutic resistance and metastasis. At present,conventional chemotherapy and radiotherapy are largely ineffective in depleting CSC pool,suggesting the need for novel therapies that specifically target the cancer-sustaining stem cells for tumor eradication and to improve the poor prognosis of PDA patients. In this study,we report that death receptor 5 (DR5) is enriched in pancreatic CSCs compared with the bulk of the tumor cells. Treating a collection of freshly generated patient-derived PDA xenografts with gemcitabine,the first-line chemotherapeutic agent for PDA,is initially effective in reducing tumor size,but largely ineffective in diminishing the CSC populations,and eventually culminated in tumor relapse. However,a combination of tigatuzumab,a fully humanized DR5 agonist monoclonal antibody,with gemcitabine proved to be more efficacious by providing a double hit to kill both CSCs and bulk tumor cells. The combination therapy produced remarkable reduction in pancreatic CSCs,tumor remissions,and significant improvements in time to tumor progression in a model that is considered more difficult to treat. These data provide the rationale to explore the DR5-directed therapies in combination with chemotherapy as a therapeutic option to improve the current standard of care for pancreatic cancer patients.
View Publication
产品类型:
产品号#:
01700
01705
产品名:
ALDEFLUOR™ 试剂盒
ALDEFLUOR™ DEAB试剂
Wray J et al. (AUG 2009)
Blood 114 9 1852--8
Metnase mediates chromosome decatenation in acute leukemia cells.
After DNA replication,sister chromatids must be untangled,or decatenated,before mitosis so that chromatids do not tear during anaphase. Topoisomerase IIalpha (Topo IIalpha) is the major decatenating enzyme. Topo IIalpha inhibitors prevent decatenation,causing cells to arrest during mitosis. Here we report that acute myeloid leukemia cells fail to arrest at the mitotic decatenation checkpoint,and their progression through this checkpoint is regulated by the DNA repair component Metnase (also termed SETMAR). Metnase contains a SET histone methylase and transposase nuclease domain,and is a component of the nonhomologous end-joining DNA double-strand break repair pathway. Metnase interacts with Topo IIalpha and enhances its decatenation activity. Here we show that multiple types of acute leukemia cells have an attenuated mitotic arrest when decatenation is inhibited and that in an acute myeloid leukemia (AML) cell line this is mediated by Metnase. Of further importance,Metnase permits continued proliferation of these AML cells even in the presence of the clinical Topo IIalpha inhibitor VP-16. In vitro,purified Metnase prevents VP-16 inhibition of Topo IIalpha decatenation of tangled DNA. Thus,Metnase expression levels may predict AML resistance to Topo IIalpha inhibitors,and Metnase is a potential therapeutic target for small molecule interference.
View Publication
产品类型:
产品号#:
02690
09850
产品名:
StemSpan™CC100
Kallifatidis G et al. (JUL 2009)
Gut 58 7 949--63
Sulforaphane targets pancreatic tumour-initiating cells by NF-kappaB-induced antiapoptotic signalling.
BACKGROUND AND AIMS: Emerging evidence suggests that highly treatment-resistant tumour-initiating cells (TICs) play a central role in the pathogenesis of pancreatic cancer. Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) is considered to be a novel anticancer agent; however,recent studies have shown that many pancreatic cancer cells are resistant to apoptosis induction by TRAIL due to TRAIL-activated nuclear factor-kappaB (NF-kappaB) signalling. Several chemopreventive agents are able to inhibit NF-kappaB,and favourable results have been obtained--for example,for the broccoli compound sulforaphane-in preventing metastasis in clinical studies. The aim of the study was to identify TICs in pancreatic carcinoma for analysis of resistance mechanisms and for definition of sensitising agents. METHODS: TICs were defined by expression patterns of a CD44(+)/CD24(-),CD44(+)/CD24(+) or CD44(+)/CD133(+) phenotype and correlation to growth in immunodeficient mice,differentiation grade,clonogenic growth,sphere formation,aldehyde dehydrogenase (ALDH) activity and therapy resistance. RESULTS: Mechanistically,specific binding of transcriptionally active cRel-containing NF-kappaB complexes in TICs was observed. Sulforaphane prevented NF-kappaB binding,downregulated apoptosis inhibitors and induced apoptosis,together with prevention of clonogenicity. Gemcitabine,the chemopreventive agents resveratrol and wogonin,and the death ligand TRAIL were less effective. In a xenograft model,sulforaphane strongly blocked tumour growth and angiogenesis,while combination with TRAIL had an additive effect without obvious cytotoxicity in normal cells. Freshly isolated patient tumour cells expressing markers for TICs could be sensitised by sulforaphane for TRAIL-induced cytotoxicity. CONCLUSION: The data provide new insights into resistance mechanisms of TICs and suggest the combination of sulforaphane with TRAIL as a promising strategy for targeting of pancreatic TICs.
View Publication
产品类型:
产品号#:
01700
01705
05751
产品名:
ALDEFLUOR™ 试剂盒
ALDEFLUOR™ DEAB试剂
NeuroCult™ NS-A 扩增试剂盒(人)
Kharas MG et al. (JAN 2007)
Blood 109 2 747--55
KLF4 suppresses transformation of pre-B cells by ABL oncogenes.
Genes that are strongly repressed after B-cell activation are candidates for being inactivated,mutated,or repressed in B-cell malignancies. Krüppel-like factor 4 (Klf4),a gene down-regulated in activated murine B cells,is expressed at low levels in several types of human B-cell lineage lymphomas and leukemias. The human KLF4 gene has been identified as a tumor suppressor gene in colon and gastric cancer; in concordance with this,overexpression of KLF4 can suppress proliferation in several epithelial cell types. Here we investigate the effects of KLF4 on pro/pre-B-cell transformation by v-Abl and BCR-ABL,oncogenes that cause leukemia in mice and humans. We show that overexpression of KLF4 induces arrest and apoptosis in the G1 phase of the cell cycle. KLF4-mediated death,but not cell-cycle arrest,can be rescued by Bcl-XL overexpression. Transformed pro/pre-B cells expressing KLF4 display increased expression of p21CIP and decreased expression of c-Myc and cyclin D2. Tetracycline-inducible expression of KLF4 in B-cell progenitors of transgenic mice blocks transformation by BCR-ABL and depletes leukemic pre-B cells in vivo. Collectively,our work identifies KLF4 as a putative tumor suppressor in B-cell malignancies.
View Publication
产品类型:
产品号#:
03630
产品名:
MethoCult™M3630
Wang W et al. (MAY 2016)
Cell 165 5 1092--105
Effector T Cells Abrogate Stroma-Mediated Chemoresistance in Ovarian Cancer.
Effector T cells and fibroblasts are major components in the tumor microenvironment. The means through which these cellular interactions affect chemoresistance is unclear. Here,we show that fibroblasts diminish nuclear accumulation of platinum in ovarian cancer cells,resulting in resistance to platinum-based chemotherapy. We demonstrate that glutathione and cysteine released by fibroblasts contribute to this resistance. CD8(+) T cells abolish the resistance by altering glutathione and cystine metabolism in fibroblasts. CD8(+) T-cell-derived interferon (IFN)γ controls fibroblast glutathione and cysteine through upregulation of gamma-glutamyltransferases and transcriptional repression of system xc(-) cystine and glutamate antiporter via the JAK/STAT1 pathway. The presence of stromal fibroblasts and CD8(+) T cells is negatively and positively associated with ovarian cancer patient survival,respectively. Thus,our work uncovers a mode of action for effector T cells: they abrogate stromal-mediated chemoresistance. Capitalizing upon the interplay between chemotherapy and immunotherapy holds high potential for cancer treatment.
View Publication
The ETS factor TEL2 is a hematopoietic oncoprotein.
TEL2/ETV7 is highly homologous to the ETS transcription factor TEL/ETV6,a frequent target of chromosome translocation in human leukemia. Although both proteins are transcriptional inhibitors binding similar DNA recognition sequences,they have opposite biologic effects: TEL inhibits proliferation while TEL2 promotes it. In addition,forced expression of TEL2 but not TEL blocks vitamin D3-induced differentiation of U937 and HL60 myeloid cells. TEL2 is expressed in the hematopoietic system,and its expression is up-regulated in bone marrow samples of some patients with leukemia,suggesting a role in oncogenesis. Recently we also showed that TEL2 cooperates with Myc in B lymphomagenesis in mice. Here we show that forced expression of TEL2 alone in mouse bone marrow causes a myeloproliferative disease with a long latency period but with high penetrance. This suggested that secondary mutations are necessary for disease development. Treating mice receiving transplants with TEL2-expressing bone marrow with the chemical carcinogen N-ethyl-N-nitrosourea (ENU) resulted in significantly accelerated disease onset. Although the mice developed a GFP-positive myeloid disease with 30% of the mice showing elevated white blood counts,they all died of T-cell lymphoma,which was GFP negative. Together our data identify TEL2 as a bona fide oncogene,but leukemic transformation is dependent on secondary mutations.
View Publication
产品类型:
产品号#:
03434
03444
05350
产品名:
MethoCult™GF M3434
MethoCult™GF M3434
Bar EE et al. (OCT 2007)
Stem cells (Dayton,Ohio) 25 10 2524--33
Cyclopamine-mediated hedgehog pathway inhibition depletes stem-like cancer cells in glioblastoma.
Brain tumors can arise following deregulation of signaling pathways normally activated during brain development and may derive from neural stem cells. Given the requirement for Hedgehog in non-neoplastic stem cells,we investigated whether Hedgehog blockade could target the stem-like population in glioblastoma multiforme (GBM). We found that Gli1,a key Hedgehog pathway target,was highly expressed in 5 of 19 primary GBM and in 4 of 7 GBM cell lines. Shh ligand was expressed in some primary tumors,and in GBM-derived neurospheres,suggesting a potential mechanism for pathway activation. Hedgehog pathway blockade by cyclopamine caused a 40%-60% reduction in growth of adherent glioma lines highly expressing Gli1 but not in those lacking evidence of pathway activity. When GBM-derived neurospheres were treated with cyclopamine and then dissociated and seeded in media lacking the inhibitor,no new neurospheres formed,suggesting that the clonogenic cancer stem cells had been depleted. Consistent with this hypothesis,the stem-like fraction in gliomas marked by both aldehyde dehydrogenase activity and Hoechst dye excretion (side population) was significantly reduced or eliminated by cyclopamine. In contrast,we found that radiation treatment of our GBM neurospheres increased the percentage of these stem-like cells,suggesting that this standard therapy preferentially targets better-differentiated neoplastic cells. Most importantly,viable GBM cells injected intracranially following Hedgehog blockade were no longer able to form tumors in athymic mice,indicating that a cancer stem cell population critical for ongoing growth had been removed. Disclosure of potential conflicts of interest is found at the end of this article.
View Publication
产品类型:
产品号#:
01700
01705
01701
01702
72072
72074
产品名:
ALDEFLUOR™ 试剂盒
ALDEFLUOR™ DEAB试剂
ALDEFLUOR™测定缓冲液
环巴胺(Cyclopamine)
环巴胺(Cyclopamine)
Zhang M et al. (SEP 2014)
International journal of cancer 135 5 1132--41
Anti-β₂M monoclonal antibodies kill myeloma cells via cell- and complement-mediated cytotoxicity.
Our previous studies showed that anti-β2M monoclonal antibodies (mAbs) at high doses have direct apoptotic effects on myeloma cells,suggesting that anti-β2M mAbs might be developed as a novel therapeutic agent. In this study,we investigated the ability of the mAbs at much lower concentrations to indirectly kill myeloma cells by utilizing immune effector cells or molecules. Our results showed that anti-β2M mAbs effectively lysed MM cells via antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC),which were correlated with and dependent on the surface expression of β2M on MM cells. The presence of MM bone marrow stromal cells or addition of IL-6 did not attenuate anti-β2M mAb-induced ADCC and CDC activities against MM cells. Furthermore,anti-β2M mAbs only showed limited cytotoxicity toward normal B cells and nontumorous mesenchymal stem cells,indicating that the ADCC and CDC activities of the anti-β2M mAbs were more prone to the tumor cells. Lenalidomide potentiated in vitro ADCC activity against MM cells and in vivo tumor inhibition capacity induced by the anti-β2M mAbs by enhancing the activity of NK cells. These results support clinical development of anti-β2M mAbs,both as a monotherapy and in combination with lenalidomide,to improve MM patient outcome.
View Publication