Translation of the Philadelphia chromosome into therapy for CML.
Throughout its history,chronic myeloid leukemia (CML) has set precedents for cancer research and therapy. These range from the identification of the first specific chromosomal abnormality associated with cancer to the development of imatinib as a specific,targeted therapy for the disease. The successful development of imatinib as a therapeutic agent for CML can be attributed directly to decades of scientific discoveries. These discoveries determined that the BCR-ABL tyrosine kinase is the critical pathogenetic event in CML and an ideal target for therapy. This was confirmed in clinical trials of imatinib,with imatinib significantly improving the long-term survival of patients with CML. Continuing in this tradition of scientific discoveries leading to improved therapies,the understanding of resistance to imatinib has rapidly led to strategies to circumvent resistance. Continued studies of hematologic malignancies will allow this paradigm of targeting molecular pathogenetic events to be applied to many additional hematologic cancers.
View Publication
Akcakanat A et al. ( 2009)
Molecular Cancer 8 1 75
The rapamycin-regulated gene expression signature determines prognosis for breast cancer
BACKGROUND: Mammalian target of rapamycin (mTOR) is a serine/threonine kinase involved in multiple intracellular signaling pathways promoting tumor growth. mTOR is aberrantly activated in a significant portion of breast cancers and is a promising target for treatment. Rapamycin and its analogues are in clinical trials for breast cancer treatment. Patterns of gene expression (metagenes) may also be used to simulate a biologic process or effects of a drug treatment. In this study,we tested the hypothesis that the gene-expression signature regulated by rapamycin could predict disease outcome for patients with breast cancer. RESULTS: Colony formation and sulforhodamine B (IC50 textless 1 nM) assays,and xenograft animals showed that MDA-MB-468 cells were sensitive to treatment with rapamycin. The comparison of in vitro and in vivo gene expression data identified a signature,termed rapamycin metagene index (RMI),of 31 genes upregulated by rapamycin treatment in vitro as well as in vivo (false discovery rate of 10%). In the Miller dataset,RMI did not correlate with tumor size or lymph node status. High (textgreater75th percentile) RMI was significantly associated with longer survival (P = 0.015). On multivariate analysis,RMI (P = 0.029),tumor size (P = 0.015) and lymph node status (P = 0.001) were prognostic. In van 't Veer study,RMI was not associated with the time to develop distant metastasis (P = 0.41). In the Wang dataset,RMI predicted time to disease relapse (P = 0.009). CONCLUSION: Rapamycin-regulated gene expression signature predicts clinical outcome in breast cancer. This supports the central role of mTOR signaling in breast cancer biology and provides further impetus to pursue mTOR-targeted therapies for breast cancer treatment.
View Publication
产品类型:
产品号#:
73362
73364
产品名:
Rapamycin
雷帕霉素
Kurtzberg LS et al. (MAY 2011)
Clinical cancer research : an official journal of the American Association for Cancer Research 17 9 2777--87
Genz-644282, a novel non-camptothecin topoisomerase I inhibitor for cancer treatment.
PURPOSE: Genz-644282 [8,9-dimethoxy-5-(2-N-methylaminoethyl)-2,3-methylenedioxy-5H-dibenzo[c,h][1,6]naphthyridin-6-one] has emerged as a promising candidate for antitumor agents. This report describes the bone marrow colony-forming unit,granulocyte macrophage (CFU-GM) and tumor cell CFU activity of topoisomerase I (Top1) inhibitors,such as Genz-644282,topotecan,irinotecan/SN-38,and ARC-111,and examines their activity in several human tumor xenograft models. EXPERIMENTAL DESIGN: Colony-forming assays were conducted with mouse and human bone marrow and eight human tumor cell lines. In addition,29 human tumor cell lines representing a range of histology and potential resistance mechanisms were assayed for sensitivity to Genz-644282 in a 72-hour exposure assay. The efficacy of Genz-644282 was compared with standard anticancer drugs (i.e.,irinotecan,docetaxel,and dacarbazine) in human tumor xenografts of colon cancer,renal cell carcinoma,non-small cell lung cancer,and melanoma. RESULTS: Human bone marrow CFU-GM was more sensitive to the Top1 inhibitors than was mouse bone marrow CFU-GM. The ratio of mouse to human IC(90) values was more than 10 for the camptothecins and less than 10 for Genz-644282,which had more potency as a cytotoxic agent toward human tumor cells in culture than the camptothecins in the colony-forming and 72-hour proliferation assays. Genz-644282 has superior or equal antitumor activity in the human tumor xenografts than the standard drug comparators. CONCLUSIONS: On the basis of preclinical activity and safety,Genz-644282 was selected for development and is currently undergoing phase 1 clinical trial.
View Publication
Park SI et al. ( 2008)
Cancer research 68 9 3323--3333
Targeting SRC family kinases inhibits growth and lymph node metastases of prostate cancer in an orthotopic nude mouse model.
Aberrant expression and/or activity of members of the Src family of nonreceptor protein tyrosine kinases (SFK) are commonly observed in progressive stages of human tumors. In prostate cancer,two SFKs (Src and Lyn) have been specifically implicated in tumor growth and progression. However,there are no data in preclinical models demonstrating potential efficacy of Src inhibitors against prostate cancer growth and/or metastasis. In this study,we used the small molecule SFK/Abl kinase inhibitor dasatinib,currently in clinical trials for solid tumors,to examine in vitro and in vivo effects of inhibiting SFKs in prostate tumor cells. In vitro,dasatinib inhibits both Src and Lyn activity,resulting in decreased cellular proliferation,migration,and invasion. In orthotopic nude mouse models,dasatinib treatment effectively inhibits expression of activated SFKs,resulting in inhibition of both tumor growth and development of lymph node metastases in both androgen-sensitive and androgen-resistant tumors. In primary tumors,SFK inhibition leads to decreased cellular proliferation (determined by immunohistochemistry for proliferating cell nuclear antigen). In vitro,small interfering RNA (siRNA)-mediated inhibition of Lyn affects cellular proliferation; siRNA inhibition of Src affects primarily cellular migration. Therefore,we conclude that SFKs are promising therapeutic targets for treatment of human prostate cancer and that Src and Lyn activities affect different cellular functions required for prostate tumor growth and progression.
View Publication
Ucar D et al. (MAR 2009)
Chemico-biological interactions 178 1-3 48--55
Aldehyde dehydrogenase activity as a functional marker for lung cancer.
Aldehyde dehydrogenase (ALDH) activity has been implicated in multiple biological and biochemical pathways and has been used to identify potential cancer stem cells. Our main hypothesis is that ALDH activity may be a lung cancer stem cell marker. Using flow cytometry,we sorted cells with bright (ALDH(br)) and dim (ALDH(lo)) ALDH activity found in H522 lung cancer cell line. We used in vitro proliferation and colony assays as well as a xenograft animal model to test our hypothesis. Cytogenetic analysis demonstrated that the ALDH(br) cells are indeed a different clone,but when left in normal culture conditions will give rise to ALDH(lo) cells. Furthermore,the ALDH(br) cells grow slower,have low clonal efficiency,and give rise to morphologically distinct colonies. The ability to form primary xenografts in NOD/SCID mice by ALDH(br) and ALDH(lo) cells was tested by injecting single cell suspension under the skin in each flank of same animal. Tumor size was calculated weekly. ALDH1A1 and ALDH3A1 immunohistochemistry (IHC) was performed on excised tumors. These tumors were also used to re-establish cell suspension,measure ALDH activity,and re-injection for secondary and tertiary transplants. The results indicate that both cell types can form tumors but the ones from ALDH(br) cells grew much slower in primary recipient mice. Histologically,there was no significant difference in the expression of ALDH in primary tumors originating from ALDH(br) or ALDH(lo) cells. Secondary and tertiary xenografts originating from ALDH(br) grew faster and bigger than those formed by ALDH(lo) cells. In conclusion,ALDH(br) cells may have some of the traditional features of stem cells in terms of being mostly dormant and slow to divide,but require support of other cells (ALDH(lo)) to sustain tumor growth. These observations and the known role of ALDH in drug resistance may have significant therapeutic implications in the treatment of lung cancer.
View Publication